

Transient Regime of Linear Circuits

Complementary Solution (Transient Solution)

 The complementary solution – called also as transient solution or natural solution – is the solution to the homogeneous equation:

$$\frac{d^{n}v(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}v(t)}{dt^{n-1}} + \dots + a_{0}v(t) = 0$$

• The final complementary solution has the form:

$$v_t(t) = \sum_{i=1}^n K_i e^{s_i t}$$

Transient Regime of Linear Circuits Where: • s_1 through s_n are the roots of the characteristic equation: $s^n + a_{n-1}s^{n-1} + ... + a_1s + a_0 = 0$ • if s_i is a real root, it corresponds to an exponential term: $K_i e^{s_i t}$ • if s_i is a complex root, there is another complex root that is its complex conjugate, and together they correspond to an exponentially decaying sinusoidal term: $e^{-\sigma_i t} (A_i \cos \omega_d t + B_i \sin \omega_d t)$

Transient Regime of Linear Circuits

$$i_{C} = C \frac{du_{c}}{dt}$$

If, the voltage on a capacitor is not continuous the current across is infinite.

The voltage on a capacitor, immediately after a step in a source waveform must be the same as the voltage just before the step.

$$u_c(0_-) = u_c(0_+) = u_c(0)$$

The continuity conditions tell us that capacitor voltages and inductor currents <u>cannot be discontinuous.</u>

Therefore, for a network with:

- zero initial conditions at t = 0, we need simply to replace a capacitor by a voltage source of zero voltage (this is simply a short circuit) or an inductor by a current source of zero output current (this is simply an open circuit), and solve for the initial values of any network variable in which we are interested.
- if some initial condition happens to be present on any of these elements, the replacement source will simply have the appropriate value of the initial capacitor voltages or inductor currents.

J

Transient of the RL Circuit	
The quantity L/R is called time constant of a R,L circuit	
$[\tau] = \frac{L}{R}$	
This is can be verified by direct dimensional analysis:	
$\left[\frac{L}{R}\right] = \frac{[\omega L]}{[R]} \cdot \frac{1}{[\omega]} = \frac{\Omega}{\Omega} \cdot \frac{1}{s^{-1}} = s$	
	J

Complementary Solution

The characteristic equation:

$$\frac{1}{C} + s \cdot R = 0 \qquad s = -\frac{1}{R \cdot C}$$

$$q_t(t) = \mathbf{K} \cdot e^{s \cdot t}, \quad t \ge 0$$
• How do I choose the value of **K**?
• The initial conditions determine the value of **K**.

Transient of the RC Circuit (sinusoidal excitation)
The steady state solution of the current:

$$\begin{bmatrix} Z = \sqrt{R^2 + \frac{1}{(\omega \cdot C)^2}} & i_p = \sqrt{2} \cdot \frac{E}{Z} \cdot \sin(\omega t + \gamma_e - \varphi) \\ \varphi = \tan^{-1} \frac{1}{R \cdot C \cdot \omega} & u_{CP} \end{bmatrix}$$
The steady state solution of the u_{CP}

$$u_{cp} = \frac{1}{C} \cdot \int i_p \cdot dt = \sqrt{2} \cdot \frac{E}{Z \cdot \omega \cdot C} \cdot \sin(\omega t + \gamma_e - \varphi - \frac{\pi}{2})$$

Transient of the RC Circuit (sinusoidal excitation)
The initial value of the voltage at
$$t = 0$$

$$u_{cp0} = \sqrt{2} \cdot \frac{E}{Z \cdot \omega \cdot C} \cdot \sin(\gamma_e - \varphi - \frac{\pi}{2})$$
The total response is:

$$u_c = \sqrt{2} \frac{E}{Z \cdot \omega \cdot C} \left[\sin(\omega t + \gamma_e - \varphi - \frac{\pi}{2}) - \sin(\gamma_e - \varphi - \frac{\pi}{2}) e^{-\frac{t}{RC}} \right]$$

Constant Time

Definition

The **time constant** of a given circuit is defined as the **time required** for any variable to decay to 36.8% of its initial value when the circuit is excited only by initial conditions. If we consider the circuit shown in the figure the solution for $u_1(t)$ is:

Second Order Linear Circuits

$$\frac{d^2q}{dt^2} + \frac{R}{L} \cdot \frac{dq}{dt} + \frac{1}{L \cdot C} q = \frac{1}{L} e(t)$$
Most circuits with one capacitor and inductor are not as easy to analyze as the previous circuits. However, every voltage and current in such a circuit is the solution to a differential equation of the following form:

$$\frac{d^2i(t)}{dt^2} + 2\zeta\omega_0 \frac{di(t)}{dt} + \omega_0^2i(t) = f(t)$$

The Laplace Transform						
Important La	place Transform	Basic Laplace	Transform Operat	ions		
f(t)	F(s)	f(t)	F(s)			
k	$\frac{k}{s}$	$f_{1}(t) + f_{2}$	(t) $F_1(s) + F_2(s)$			
$e^{-at}(a>0)$	$\frac{1}{s+a}$	$k \cdot f(t)$	$k \cdot F(s)$			
sin <i>w</i> t	$\frac{\omega}{s^2+\omega^2}$	$\frac{df}{dt}$	$s \cdot F(s) - f(0-)$			
t	$\frac{1}{s^2}$	a_{t}	$\frac{1}{E(s) + f(0-)}$			
$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$		s s			
			i			

