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Basic of Electrotechnics

Technical University of Cluj-Napoca

Recommended textbooks

• Radu Ciupa, Vasile Topa, “The Theory of Electric Circuits”, 

Casa Cartii de Stiinta Printing House, Cluj-Napoca, 1998;

• Vasile Topa, Radu Ciupa “The Theory of Electromagnetic 

Field”,

• PowerPoint presentations. Available on the web page

http://www.et.utcluj.ro/Cursuri_V_Topa.htm

Basic of Electrotechnics



2

The Theory of Electric Circuits

Contents

1. Transient Regime of Linear Circuits 

2. Transmission Lines

1.1. Transient Regime of Linear Circuits Transient Regime of Linear Circuits 

2.2. TransTransmission Linesmission Lines

Basic of Electrotechnics

Transient Regime of Linear Circuits

Theory of Electric Circuits



3

Definition

Whenever a circuit is switched from one condition to 

another, either by a change in the applied source or a 
change in the circuit elements – there is a transitional 

period during which the branch currents and element 

voltages change from their former values to new ones. 

This period is called the transient time.

Transient Regime of Linear Circuits

Important Concepts

• The differential equation (the 1st, 2nd, …nth order).

• Forced (particular) and natural (complementary) 
solutions.

• The time constant.

• Transient and steady state waveforms.

Transient Regime of Linear Circuits
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After the transient time (transient voltages and currents have 

settled down) the circuit is said to be in the steady state.

Remarks

The time varying voltage and current in a circuit can be 

described by a linear differential equation:
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n th order is given by the number of energy storage 

elements (capacitors and inductors)

Transient Regime of Linear Circuits

Particular Solution (Steady State Solution)

• constant, then vp(t) is constant.

• sinusoidal, then vp(t) is  sinusoidal.

If the right term term f(t) is:

The particular solution – called also as forced solution or

steady state solution – vp(t) is typically a weighted sum of f(t)

and its first n derivatives.

Transient Regime of Linear Circuits
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Complementary Solution (Transient Solution)

• The complementary solution – called also as transient 

solution or natural solution – is the solution to the 
homogeneous equation:
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• The final complementary solution has the form:

Transient Regime of Linear Circuits

• s1 through sn are the roots of the characteristic equation:
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Where:

• if si is a real root, it corresponds to an exponential term:

• if si is a complex root, there is another complex root that 

is its complex conjugate, and together they correspond 

to an exponentially decaying sinusoidal term:
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Transient Regime of Linear Circuits
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unknowns

Transient Regime of Linear Circuits

Is it possible for the capacitor voltage or for the inductor

current simply to jump up to their final values immediately ?

dt

di
LuL =

( ) ( ) ( )0 0 0L L Li i i− += =

If, the current in an inductor is not continuous the voltage on 

the inductor is infinite.

The current in an inductor, immediately after a step in a 

source waveform must be the same as the current just 

before the step.

Continuity Conditions

Transient Regime of Linear Circuits
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If, the voltage on a capacitor is not continuous the current 

across is infinite. 

The voltage on a capacitor, immediately after a step in a 

source waveform must be the same as the voltage just 

before the step.

c
C

du
i C

dt
=

The continuity conditions tell us that capacitor voltages and 

inductor currents cannot be discontinuous..

Transient Regime of Linear Circuits

Therefore, for a network with:

• zero initial conditions at t = 0, we need simply to replace a 
capacitor by a voltage source of  zero voltage (this is simply 

a short circuit) or an inductor by a current source of  zero 

output current (this is simply an open circuit), and solve for 

the initial values of any network variable in which we are 

interested.

• if some initial condition happens to be present on any of 

these elements, the replacement source will simply have the 

appropriate value of the initial capacitor voltages or inductor 

currents.

Transient Regime of Linear Circuits



8

∑
=

+=+=
n

i

ts

iptp
ieKtvtvtvv

1

)()()(

)0()0()0( LLL iii == +−

)0()0()0( ccc uuu == +−

For each:

• Capacitor

• Inductor

Transient Regime of Linear Circuits

First Order Linear Circuits

• any circuit with a single energy storage element (inductors

or capacitors), an arbitrary number of sources, and an 
arbitrary number of resistors is a circuit of order 1.

• any voltage or current in such a circuit is the solution to a 

1st order differential equation.

• types of 1st order circuits:

• R, L circuits;

• R, C circuits.

First Order Linear Circuits
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0 = 
dt

di
L + Ri

t
t

( ) 

di
+ L  = u tRi

dt

( ) ( ) ( )t pi t i t i t= +

uR uL ( )R Lu u = u t+

u(t)

R L i(t)

t =0

Transient of the RL Circuit

Complementary Solution

• How do I choose the value of K?

• The initial conditions determine the value of K (initial 
value of the inductor’s current).

• The characteristic equation:

( ) 0
s t

ti t K e , t
⋅= ⋅ ≥

Transient of the RL Circuit

R
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i (0) =  ip(0) +  it(0) or     i0 = iP0 + K

Thus : K =  i0 - ip0

( ) ( ) ( ) ( ) ( )
R t

- t -
L τp 0 p0 p 0 p0i t  = t  +  - t  +  - i i i e i i i e⋅ = ⋅

Transient of the RL Circuit

Where:

represents the value of the current immediately before the switching 

operation i0 = i(0-). Obtained from the continuity conditions. 
i0

the quantity L/R must have the dimensions of  time (constant time).

represents the steady state-value of the current at t = 0ip0

represents the solution of the non-homogenous equation (similar form 

to the excitation) - it is called the particular (or steady-state) solution

ip(t)

τ

The quantity L/R is called time constant of a R,L circuit
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This is can be verified by direct dimensional analysis:

Transient of the RL Circuit
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Response to sources with constant excitation

E = iR + 
dt

di
L ⋅

• the steady-state current is: ip= E/R 

• the steady-state current at t = 0 is: ip0= ip= E/R

• the initial current in the circuit at t  < 0 is: i0 = i(0-) = 0.

U(t) = E = cst.
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a) The switch is closed 

Transient of the RL Circuit (constant excitation)

The voltage across the inductance L is:

eE = 
dt

di
L = u

t
L

R
-

L ⋅⋅

What does i (t) look like?
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Transient of the RL Circuit (constant excitation)
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b) The switch is opened

t = 0

R L

uR uL i(t)

E Rp

Rp = resistance between the switch 

contacts (non-linear) 
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Transient of the RL Circuit (constant excitation)
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The voltage across the inductance is:
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R
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L = u

p
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τ

1

Transient of the RL Circuit (constant excitation)
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Remarks

• if E = 100 V and Rp/R high (i.e. 10) the voltage on the inductance 

and at the switch contacts is 1.000 V.

The switch contacts can be protected by:

• connecting a diode in parallel with the inductance, or

C

Diode

E

i(t)
R L

• a capacitance in parallel with the switch contact.

Transient of the RL Circuit (constant excitation)

Response to sources with sinusoidal excitation

u(t)

R L
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i(t)

t =0
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Transient of the RL Circuit (sinusoidal  - excitation)
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)-( I2 = i ep ϕγsin0 ⋅⋅The steady state solution at t = 0

The initial value of the current t < 0 00  = i

The total response for t > 0 is:

t
L

R

ee
e)-( I2)-+t( I2 = ti

−

⋅ϕγ⋅⋅−ϕγω⋅⋅ sinsin)(

Transient of the RL Circuit (sinusoidal  - excitation)

What does i (t) look like?

0

0

100

200
i(t)

tω
-100

Transient of the RL Circuit (sinusoidal  - excitation)
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One can study two cases:

1)

Thus the steady-state regime appears immediately, without a 

transient response.

0 = -ϕγ i = t I2= i(t) pωsin⋅⋅

2)

2

π
ϕγ  = -e )(cos

t
L

R

et I2= i(t)

−

−⋅⋅ ω

Transient of the RL Circuit (sinusoidal  - excitation)

u(t) = idt
C

1
 + iR ∫⋅⋅

Transient of the RC Circuit

i(t)
R C

uR uC

t = 0
u(t)

( )R Cu + u  = u t

q = dt i    ,
dt

dq
 = i ∫

u(t) = q
C

1
 + 

dt

dq
R

But: 

( ) ( ) ( )p t
q t  = t + tq q

Transient of the RC Circuit 
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Complementary Solution

• How do I choose the value of K ?

• The initial conditions determine the value of K.

0s t

tq ( t ) e , t
⋅= ⋅ ≥K

The characteristic equation:

0
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=⋅+ Rs
C CR

s
⋅

−=
1

Transient of the RC Circuit 

q (0) =  qp(0) +  qt(0) or q0 = qp0 + K

Thus : K= q0 - qp0

( ) ( ) ( ) t

R Cp 0 p0
q t  = q t  +  - q q e

−
⋅⋅

• q(t) is the transient charge of the capacitor for t > 0;

• qp(t) is the permanent charge (or steady-state charge) of the capacitor, 

as a form similar to the particular form of the excitation;

• qp0 represents the value of the steady-state charge for t = 0.

• q0 represents the value of the charge immediately before the switching

operation: q0 = q (0-) .(Obtained from the continuity conditions).

• the quantity RC must have the dimensions of  time.

Where:

Transient of the RC Circuit 
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u(0)  =  up(0)  +  uL(0) or u0 = uP0 + K

Thus : K =  u0 - up0

( ) ( ) ( )0 0

t

R Cp pu t  = u t +  u  - u e
−
⋅⋅

• u(t) is the transient voltage of the capacitor for t > 0;

• up(t) is the steady-state voltage of the capacitor;

• up0 is the value of the steady-state voltage for t = 0.

• u0 is the value of the voltage immediately before the switching operation:

u0 = u(0-). (Obtained from the continuity conditions).

• the quantity RC must have the dimensions of  time.

Where:

Transient of the RC Circuit 

τ

The quantity RC is called time constant of a R,C circuit:

[ ] CR = ⋅τ
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This is readily verified by direct dimensional analysis.

Transient of the RC Circuit 
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Response to sources with constant excitation

• the steady-state voltage is: up= E 

• the steady-state voltage at t = 0 is: up0= up= E

• the initial voltage on the capacitor is: u0 = uc0(0-) = 0, for at t  < 0.

( ) ( )0 1

t t

R C R C
C

E
u t E E e e

R

− −
⋅ ⋅

  = + − ⋅ = ⋅ −   

a) The switch is closed (and the 

capacitor is with initial zero 

conditions)

R C

uR uC

t = 0

u(t)=E =cst.

Transient of the RC Circuit (constant excitation)
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t

R Cp pu t  = u t +  u  - u e
−
⋅⋅

The corresponding charge on the capacitor is:

)1()( eCE = tuC = q CR

t
-

cC
−⋅⋅⋅ ⋅

The voltage uC (t) on the capacitor is?

)1()( CR

t

C eEtu ⋅
−

−⋅=

The current is given by:

e
R

E
 = 

dt

du
C

dt

dq
 = i

CR

t
-

C ⋅⋅=
⋅

Transient of the RC Circuit (constant excitation)
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What does i(t) look like?

i(t)

t (s)

Transient of the RC Circuit (constant excitation)

Constant Time

Response to sources with sinusoidal excitation

u(t)

)sin(2)( etEtu γ+ω⋅⋅=
R C

uR uC

t = 0

i(t)

Let us consider uc0= 0.

Transient of the RC Circuit (sinusoidal excitation)

( ) ( ) ( )0 0

t

R Cp pu t  = u t +  u  - u e
−
⋅⋅



20

The steady state solution of the current:
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Transient of the RC Circuit (sinusoidal excitation)
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The initial value of the voltage at t = 0

Transient of the RC Circuit (sinusoidal excitation)
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One can study two cases:

1)

Thus the steady-state regime appears immediately, without a transient 

response.

2

π
ϕγ  = -e

( ) ( )C p

E
u t = 2  sinωt = u t

Z ω C
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2) 0 = -e ϕγ ( )
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If t << RC , 

This is the, so-called, stroke 

voltage.
U2=

CZ

E
22u mc ⋅









⋅ω⋅
≅

max

Transient of the RC Circuit (sinusoidal excitation)

Constant Time

The complementary solution for any 1st order circuit is:

1) For R, L circuit,  constant time

2) For R, C circuit,  constant time

τ−⋅= /)( t

c eKtv

Constant time

L
τ

R
=

τ R C= ⋅
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Definition

The time constant of a given circuit is defined as the time required for 

any variable to decay to 36.8% of its initial value when the circuit is 

excited only by initial conditions. If we consider the circuit shown in the 

figure the solution for uL(t) is:

E0.368=eE=
R

L
u

1-
L ⋅⋅









R L

uR uL

i(t)

t =0

E

eE = 
dt

di
L = u L

R
-

L ⋅⋅τ τ)(

Constant Time

Interpretation of ττττ

1/       is the initial slope of an exponential with an initial value of E = 1 V.

eE = 
dt

di
L = u

t
-

L ⋅⋅ τ

( )
.

11
0

EeE = 
dt

ud
-

L ⋅
τ

−=⋅⋅








τ
−

τ

ττττ

E0.368 ⋅

Constant Time

τ
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τ represents the time required for i (t) to reach 63,2 % of its final value in 

an 1st order R, L circuit.

( ) 1 1
1 0 632

τ

τ
p p

E E e e
i τ e i i ,

R R e e

−     − −   = ⋅ − = ⋅ = ⋅ = ⋅          

regimstatesteadyii

ii

ii

ii

p

p

p

p

≅⋅>τ⋅

⋅=τ⋅

⋅=τ⋅

⋅=τ⋅

99,0)5(

982,0)4(

950,0)3(

865,0)2(

Constant Time

Interpretation of ττττ

Second Order Linear Circuits

• any circuit with a single capacitor, a single inductor, an 
arbitrary number of sources, and an arbitrary number of 
resistors is a circuit of order 2.

• any voltage or current in such a circuit is the solution to a 2nd 
order differential equation.

• type of 2nd order circuit:

• R, L, C circuits.

Second Order Linear Circuits
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• The differential equation of the 2nd order

• Forced and homogeneous solutions

• The natural frequency and the damping ratio

• Transient and steady state waveforms

Second Order Linear Circuits

Important Concepts

R L

uR uL

i(t)

t =0

uC

C

Applying KVL to the RLC series circuit we obtain:

u u u eR L C+ + =

e(t)

( )1di
Ri L idt e t

dt C
+ + =∫

Second Order Linear Circuits



25

Because one may write:

2

2

dq di d q
i , idt q,

dt dt dt
= = =∫

( )
2

2

1d q dq
L R q e t

dt dt C
+ + =

Second Order Linear Circuits

( ) ( ) ( )t pq t q t q t= +

The  complete solution of the equation is given by:

e(t) = 0

( )
2

2

1 1d q R dq
q e t

dt L dt L C L
+ ⋅ + =

⋅

Most circuits with one capacitor and inductor are not as easy to
analyze as the previous circuits. However, every voltage and 
current in such a circuit is the solution to a differential equation of
the following form:

( ) ( )
( ) ( )

2

2

0 02
2

d i t di t
ζω ω i t f t

dt dt
+ + =

Second Order Linear Circuits
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The damping ratio is:

The natural frequency is:

2

R C
ς

L
= ⋅

0

1
ω

L C
=

⋅

The transient solution (or homogenous solution) has the form:

• K is a constant determined by the initial conditions.

• s is the root of the homogenous equation (function of the 
coefficients of the differential equation): 

( ) st

ti t K e= ⋅

Second Order Linear Circuits

( ) ( ) ( )t pi t i t i t= +

( )s s R, L,C=

Characteristic Equation

To find the transient solution, we need to solve the characteristic 
equation:

• The characteristic equation has two roots, s1 and s2.

• The transient solution is:

02 2

00

2 =++ ωζω ss

tsts

t eKeKti 21

21)( ⋅+⋅=

Second Order Linear Circuits
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Damping Ratio and Natural Frequency

• The damping ratio is  ζ. The damping ratio determines what 
type of solution we will get:

– exponentially decreasing (ζ >1)

– exponentially decreasing sinusoid (ζ < 1)

• The natural frequency is 

– it determines how fast sinusoids wiggle.

Second Order Linear Circuits

0ω

Roots of the Characteristic Equation

The roots of the characteristic equation determine whether the 
transient solution wiggles.

12

001 −+−= ςωςωs 12

002 −−−= ςωςωs

Second Order Linear Circuits

a) Real Unequal Roots (ζ > 1)

( ) ( ) ( )2 2
0 0 0 01 1

1 2

ςω ω ς t ςω ω ς t

t
i t K e K e

− + − − − −
= ⋅ + ⋅

Remarks:
This solution is over damped.

The constants K1 , K2 are computed from the initial conditions of L and C.
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Over damped examples:

0

0.2
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0.6

0.8
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-1.00E-06 t
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0

0.2

0.4

0.6

0.8

-1.00E-06 t

i(
t)

Second Order Linear Circuits

b) Real Equal Roots (ζ = 1) ( ) 0

1 2

ω t

t
i ( t ) K K e

−= + ⋅

Remarks:

This solution is critically damped.

c) Complex Roots (ζ < 1). 

Define the following constants:

0ςωσ =

2

0 1 ςωω −=d

Remarks:

• This solution is under damped.

• The constants A1 and A2 are computed from the initial conditions 

of the reactive elements L and C.

( ) ( )1 2

σt

t d d
i t e A cosω t A sinω t

−= ⋅ ⋅ + ⋅

Second Order Linear Circuits

Under damped example:
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1
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t

i(
t)
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Example

ω0 = 2π455000

ζ = 0.011

1. Is this system over damped, under damped, or critically damped?

2. What will the transient current look like?

Second Order Linear Circuits

a) The shape of the current depends on the initial capacitor voltage 
and inductor current.

b) Exponentially decreasing sinusoid  because ζ < 1.

c) This solution is under damped.
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.00E-05 1.00E-05 3.00E-05

t

i(
t)

Higher Order Linear Circuits

• The text has a chapter on 1st order circuits and a chapter 

on 2nd order circuits.

• The text has no chapter on 3rd order circuits.

• Why ?

Higher Order Linear Circuits

Higher Order Linear Circuits are Boring!

• The behavior of a higher order (3rd or higher order) circuit 

is not qualitatively different than that of a 1st or 2nd order.

• Particular solutions are similar, especially for constant and 
sinusoidal sources.
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Remarks:

1. The natural response is a sum of decaying exponentials and/or 
exponentially decaying sinusoids.

2. The responses of higher order circuits have the same sort of 
characteristics as 1st and 2nd order circuits

3. There are more terms in the solution. 

Higher Order Linear Circuits

Mathematical Justification

Any voltage or current in an nth order linear circuit is the solution to 
a differential equation of the following form:
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1. The particular solution is typically a weighted sum of       
and its first n derivatives.

Higher Order Linear Circuits

( ) ( ) ( )p t
ν t ν t ν t= +
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ν t ( )f t
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p

cons tan t ν t cons tant
f t

sinusoidal ν t sinusoidal
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2. The transient solution is the solution of the equation:
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s1 - sn are the roots of the characteristic equation: 0... 01
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n
Ki – are the constants obtained from the continuity conditions
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Time Waveforms

If si is a real root, it corresponds to an exponential term

If si is a complex root, there is another complex root that is its 

complex conjugate, and together they correspond to an 

exponentially decaying sinusoidal term

ts

i
ieK

( )tBtAe didi

ti ωωσ
sincos +−

Higher Order Linear Circuits

Example 1

A 3rd order linear circuit has the following characteristic equation:

s3 + 6s2 + 11s + 6 = 0

1. What terms would we expect in the transient solution?

Higher Order Linear Circuits

Answer

The roots of the characteristic equation are: -1, -2, and -3

The transient solution is:

Initial conditions will determine the values of the constants K.

ttt eKeKeK 3

3

2

21

−−− ++
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Example 2

A 4th order linear circuit has the following characteristic equation:

s4 + s3 - 2s2 + 2s + 4 = 0

1. What terms would we expect in the transient solution?

Higher Order Linear Circuits

Answer

The roots of the characteristic equation are: -1, -2, (-1 + j), (-1 – j).

The transient solution is:

Initial conditions will determine the values of the constants K.

( )tBtAeeKeK
ttt sincos 33

2

21 +++ −−−

The Laplace Transform

The advantages of the Laplace transform for the analysis of 
feedback systems are:

1. It includes the initial conditions.

2. The work involved in the solution is a simple algebra.

3. The work is systematized.

4. The use of a table of transforms reduces the effort  required.

5. The discontinuous inputs can be treated.

6. The transient and steady-state components of the   solution  are

obtained simultaneously.

The Laplace Transform
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The Laplace transform is defined as: [ ]( ) ( )-st

0

f t = f(t) dt F se

∞

⋅ ⋅ =∫
where:

• s is a complex quantity

• f(t) time domain function

• F(s) frequency domain function.

�

Conditions that the integral converges to a finite value:

∞∫
∞

 < dte|f(t)| t-

0

1σ

f(t) = 0 for t <0.

f(t) to be continuous after t = 0.

The Laplace Transform

Definition

F(s)f(t)
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Important Laplace Transform 
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Basic Laplace Transform Operations
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The Laplace Transform
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L
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Network Analysis by Laplace Transform

⇒
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Network Analysis by Laplace Transform
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R L
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Applying KVL to the RLC series circuit we obtain:
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The Laplace Transform
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Network Analysis by Laplace Transform
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Network Analysis by Laplace Transform

01
( ) ( ) (0) C

U
R s L I s E s L i

s C s

 
+ ⋅ + ⋅ = + ⋅ − 
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s
⋅ = + ⋅ −

( ) ( ) ( )Z s I s E s⋅ =

If the initial conditions are zero:

0
(0) 0

C
i U= =

The Laplace Transform

Initial circuit in time domain
(at t < 0)

Circuit in complex domain t > 0

(Laplace transform)

Analysis of the circuit in s domain
(any method can be applied)

Inverse Laplace transform
Solutions of the circuit 

in time domain

Network Analysis by Laplace Transform

Computation of the initial conditions at t < 0

( )0
(0) 0 0

L C
i and U at t <
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Computation of the initial conditions

0(0) 0L Ci and U at t <

Example

Initial circuit in time domain

(at t < 0)

0
0

1

0 0

(0)

(0)

L

C C

U
i i

R

U U U

= =

= =

Circuit in complex domain t > 0

(Laplace transform)

Network Analysis by Laplace Transform

0
0

1 2

( )
1

U
L i

sI s

R R s L
s C

⋅ −
=

+ + ⋅ +
⋅

Analysis of the circuit in s domain

(any method can be applied)

Possible methods:

Kirchhoff, loop, potential, 

Thevenin, Norton, etc.

( ) ?i t =

Network Analysis by Laplace Transform

Circuit in complex domain t > 0

(Laplace transform)
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Inverse Laplace transform
Solutions of the circuit 

in time domain
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Heaviside method

Network Analysis by Laplace Transform

Case 1: First-order real poles
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Case 2: First-order real poles with 
one zero pole
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Other cases: see the book

Network Analysis by Laplace Transform
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Network Analysis by Laplace Transform
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