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Transmission Lines

• Limitation of the circuit theory

• Definition & types of transmission lines (TL) 

• Primary TL parameters

• The distributed-element model of TL

• The first order equations (and second) of TL

• Derivation of power equation 

• Steady-state TL equations.

• Equivalent TL equations

• Semi-infinite TL

• Heaviside TL conditions

Topics of the course
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Limitations of the circuit theory

At low frequencies, circuit theory is generally adequate to explain 

the behavior of collections of electronic components interconnected 

by wires. Such circuits are modeled using: lumped circuits.

• wires are also reactive components which store energy;

• the division of the circuit into separate reactive components 

interconnected by non-reactive "wires" is only an approximation.

As frequency increases, the circuit approximation becomes 

progressively less good, for a number of reasons:

• the energy stored in reactive components is held in the space 

around the components, and different components can have 

"fields" which overlap;

Lumped circuitsLumped circuits

• Assumes that the entire circuit is at a single point (lumped).

• This means that circuit component dimensions  are unimportant.

• Voltage & current do not vary across the component.

• Voltage applied at one point,  the rest of the circuit reacts

instantly.

• We don’t have to consider travel time of the signal across

components.

• Typical lumped elements are  resistors, capacitors, inductors.
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The Lumped-Element Model

• Lumped-element model for the entire transmission as 

seen from A-A´ and B-B´:

Transmission Line∼
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(KCL)

(KVL)

Valid only if 

l (length of the line) << λ (wavelength of the signal)

Light speedLight speed

But ……the speed of light is finite and electromagnetic signals

(in free space) travel at the light speed.

c0 = 3×108 m/sec

In practical transmission systems the actual speed of the signal

is determined by electrical and magnetic properties of the 

surrounding media and the geometry of the conductors.

So what does a distributed circuit look like?
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A Long Wire!A Long Wire!
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Non zero travel time cannot be neglected!

Voltages and currents along the wire cannot

respond simultaneously to the excitation.

x
i(x,t)

Load current does

not change until
t = �/v

When do we use When do we use 

lumped/distributed analysis?lumped/distributed analysis?
For steady state sinusoidal applications we can look at the 

one way propagation delay time td.

Say we have an excitation ( )tsinEein ω⋅⋅= 2

Then the voltage at a distance of � is delayed by td= �/v

This voltage is:

( ) ( )[ ]
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T = 1/f

= period

The delay is dependent with the frequencies !!
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Two optionsTwo options
1. td <<<<<<<<T

Then voltage at � is almost the same as the input voltage.

- treat the line as a lumped system.

2.   td comparable to T

In this case the voltage down the line can be quite 
different e.g. at td = 0.5T, u 

�
= -Ein – distributed system. 

Rules:

Use lumped analysis when:

• td<0.1T, or more stringently when td<0.01T or equivalent

• the wavelength of the electromagnetic signal is comparable 

with the geometric length of the line:

]m[
ff

c
Tc

8103×
==⋅=λ

Maximum lengths for lumped Maximum lengths for lumped 

applicationsapplications

5××××1014 Hz

10 GHz

150 Mhz

1 kHz

50 Hz

Frequency

6 nm600 nmVisible light

0.3 mm3 cmRadar/Microwave

2 cm2 mTV

3 km300 kmTelephone

60 km6.000 kmPower Transmission

Max length 

( based on td = 

0.01T)

WavelengthApplication

f

8103×
=λ
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The term transmission line is usually reserved for structures 

that are at least a significant fraction of a wavelength in 

length and have uniform electromagnetic properties along 

their length.

Introduction

Examples are as follows:

• coaxial lines: flexible, semi flexible or rigid with solid 

insulation,perforated insulation or air-spaced;

• parallel pair of conductors: parallel wires (air-spaced, 

insulated); parallel tracks on an insulating substrate;

• strip-line: microstrip (in microwave integrated circuits): 

conducting strips insulated from a conducting ground plane;

• waveguides: hollow metal pipes (commonly of rectangular 

cross-section).

Main remarks about TL

• Definition: 

Structures used to transmit energy or signal in the form of 

guided-wave electromagnetic fields from one place to another.

• Modeling:

Distributed-element model

Electromagnetic model (Maxwell equations)

• Key Concepts:

Waves and properties
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Different Types of Transmission Lines

Types of Transmission lines (cont)

twin wire (TEM)

coaxial (TEM)

tri-plate (TEM)

waveguide

microstrip

slotline

finline

image line
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The Distributed-Element TL Model

∆x ∆x ∆x ∆x ∆x ∆x

1. Divide the entire transmission line into segments with length 

∆x<< λ

2. For each segment, postulate the lumped elements related to 

the series resistance, the parallel capacitance, the series 

inductance, and the parallel conductance.

Distributed elementDistributed element--modelmodel

Inductance and Capacitance are the most important parameters.

The current in the line sets up a field and induces a voltage

The capacitance exists between the lines.

Both L0 & C0 are distributed along the line.

Both are not perfect, some attenuation (R0 & G0) always exists.










dt

di
L0
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The primary TL parameters

Any (two-wire) transmission line has four fundamental electrical 

parameters. They are also called primary line parameters (constants):

• R0, the series resistance:
x

R
 lim = R

0x
0

∆

∆

∆ →

x

L
 lim = L

0x
0

∆

∆

∆ →

x

C
 lim = C

0x
0

∆

∆

∆ →

x

G
 lim = G

0x
0

∆

∆

∆ →

In general, these lines parameters are referred to a loop or 

pair of wires of fixed length or per unit length of line. 

• L0, the series inductance:

• C0, the shunt capacitance:

• G0, the shunt conductance (or leakage):

Transmission line equations

R0 : the resistance of the conductors per unit length in Ω/m;

L0 : the inductance of the conductors per unit length in H/m;

G0 : the conductance of the insulation medium per unit length in 1/Ωm;

C0 : the capacitance of the conductors per unit length in F/m.

Next Step: To establish relations among the currents and the voltages 

at x and x + ∆x

Consider one segment at position x along the line:

i(x,t)

u(x,t)

i(x+∆x,t)

u (x+∆x,t)

R0 ∆x L0 ∆x

C0 ∆x G0 ∆x

∆ x
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By application of KVL:

000 =
∂

∂
⋅⋅+⋅⋅+++− i

t
xLixR)t,xx(u)t,x(u ∆∆∆

but:
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Divided by  ∆ ∆ ∆ ∆ x and let  ∆ ∆ ∆ ∆ x →→→→ 0

First order telegrapher's equations

By application of KCL

i(x,t)

u(x,t)

i(x+∆x,t)

u (x+∆x,t)

R0 ∆x L0 ∆x

C0 ∆x G0 ∆x

∆ x

000 =
∂

∂
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∂
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First order telegrapher's equations
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Comments on the TL equations

• both  equations, within the level of approximations, are partial

differential equations (PDE) that governing the voltage and 

the current along the transmission lines.

• the line primary parameters R0, L0, G0, C0 are related to the 

physical properties of the transmission line and may be 

functions of position x.

• give the line parameters, solutions of the equations describe 

the voltage and the current along the transmission lines
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Second order telegrapher's equation

Assume R0,L0,G0,C0 are all constants
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( )
2 2

0 0 0 0 0 0 0 02 2

i i i
R G i R C G L L C

x t t

∂ ∂ ∂
= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅

∂ ∂ ∂

Wave Equations for Lossless Transmission Line

If the line is lossless, then R0 = G0 = 0, therefore:

2
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⋅
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The velocity of the propagating wave

Conclusion: The voltage and the current travel along the transmission 

line are governed by the wave equations

Solutions of the Wave Equation for Loss less 

Transmission Line
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Backward propagating wave

Conclusion: The total voltage and the current are sum of 

the forward and the backward propagating waves along the 

transmission line as expressed in (1-2).
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Example: Forward Propagating Wave

x

t = 0

t = T

x
vT

Derivation of the Power Equation
Multiply eq. (1) by i(x,t) and eq. (2) by u(x,t), add:
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Total Power

Power Dissipation

Stored EM Energy
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Net Power Flow = Power Dissipation + Change in Stored Energy!
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Steady-State TL Equations

( ) ( ) ( ) ( ), t  or  i x,t jω   or  I x
t

u x U x
∂

↔
∂

( ))x(tsin)x(Ut),x(u uγ+ω⋅= 2

Real functions of x and t

Complex functions of x only

ωωωω being the frequency of the sinusoidal signal

Furthermore:

( ))x(tsin)x(It),x(i iγ+ω⋅= 2

uj
e)x(U)x(Ut),x(u

γ⋅⋅=⇔

ij
e)x(I)x(It),x(i

γ⋅⋅=⇔

( ) ( )
( ) ( )

, t  or i x,t  or 
dU x d I x

u x
x dx dx

∂
↔

∂

t

i
LiR
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∂
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∂
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t
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∂
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∂
− 00

( ) ILjRILjIR
dx

Ud
⋅ω+=⋅ω+⋅=− 0000

( ) UCjG
dx

Id
⋅ω+=− 00

Comments on the steady-state TL equations

• Both equations are ordinary differential equations (ODE) governing 

the complex voltage and the current U(x) and I(x) along the TL.

• The complex U(x) and I(x) have no direct physical meaning. On the 

other hand, once the complex U and I are known, the physical time-

dependent, real solutions can be obtained.

Convert to 

Complex Domain

Procedure for Sinusoidal Steady State Solutions

Convert to 

Real Domain

Solve  

Complex Equations
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Steady-state TL equations (cont)

If R0 ,L0 ,G0 ,C0 are all constants of x (homogeneous TL), then by 

taking derivative of (4) and making use of (5), we have:

Complex propagation constant in 1/m

Similarly, we have:

( ) ILjR
dx

Ud
⋅ω+=− 00 ( ) UCjG

dx

Id
⋅ω+=− 00

(4) (5)

( ) ( ) UCjGLjR
dx

Ud
⋅ω+⋅ω+= 00002

2

0
2

2

2

=⋅γ− U
dx

Ud

( ) ( ) ICjGLjR
dx

Id
⋅ω+⋅ω+= 00002

2

0
2

2

2

=⋅γ− I
dx

Id

( ) ( )0000 CjGLjR ω+⋅ω+=γ

( ) ( ) β+α=ω+⋅ω+=γ jCjGLjR 0000

α = attenuation constant

[α]SI= 

β = phase constant

[β] =
m

Np

m

Neper

1

1

1

1
=

m

rad

1

1

cestanadmiltransversa,CjGY

impedanceallongitudin,LjRZ

000

000

ω+=

ω+=

Z0 Y0
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)CL + GR + YZ(
2

1
 =         00

2
0000 ωα

)GR - CL + YZ(
2

1
 =         0000

2
00 ωβ

The expression for the attenuation and phase constants with 

respect with the primary TL parameters

00 C + G = Y    ,L + R = Z        
222

00

222
00 ωω

Where Z0 and Y0 are:

General Solutions
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( )xx
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=
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( ) ( ) idid
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id IIUU
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I −=−⋅=−⋅
ω+

γ
=

1
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Physical Meaning of the General Solution:

• the total voltage/current are sum of the forward (exp[- γγγγx]) 

and the backward (exp[+γγγγx]) propagating waves:

iUdU)x(U +=

• the forward propagating voltage (or current) waves Ud (or Id )

are also called the direct voltage (or current) waves; 

• the backward propagating voltage (or current) waves Ui (or Ii) 

are also called the inverse voltage (or current) waves;

Relationship between Ud, Ui and Id, Ii

c

i

i

d

d Z
jωωG

LjωR

I

U

I

U
=

+

+
=−=

00

00

Zc: the characteristic impedance of the transmission line (ΩΩΩΩ)

Only two knowns A and B remain to be determined!

The secondary TL parameters

Complex propagation constant

( ) ( )0000 CjGLjR ω+⋅ω+=γ

Characteristic impedance (ΩΩΩΩ)

0

0

00

00

Y

Z

jωωG

LjωR
Z c =

+

+
=

Where:

• Z0 is the longitudinal impedance

• Y0 is the transversal admittance

xγ
eB

xγ
eA)x(U

⋅+
⋅+

⋅−
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Equivalent TL equations
1) Suppose that the voltage and the current for x = 0 are known: 

U1(0) and I1(0)

x x’

l
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I1 I2
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0 UBA
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( ) ( ) 1

11
0 IBA

Z
eBeA

Z
)(I

c

xx

c

=−⋅=⋅−⋅⋅=
⋅γ+⋅γ−

1
UBA =+

1IZBA c ⋅=− 2

11 cZIU
A

⋅+
=

2

11 cZIU
B

⋅
=

−

Finally:

xγ
e

cZIUxγ
e

cZIU
)x(U

⋅+
⋅

⋅−
+

⋅−
⋅

⋅+
= 
















2

11

2

11







 ⋅+

⋅














 ⋅−
−

⋅−
⋅














 ⋅+
=

xγ
e

cZIUxγ
e

cZIU

cZ
)x(I

2

11

2

111



19

)xγ(shcZI)xγ(chU)x(U ⋅⋅⋅−⋅⋅=
11

)xγ(sh
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U)xγ(chI)x(I ⋅⋅⋅−⋅⋅=

1
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2) Suppose that the voltage and the current for x = l are known

U2(l) and I2(l)

l

x x’

U1 U2
I1 I2

)'xγ(shcZI)'xγ(chU)'x(U ⋅⋅⋅+⋅⋅=
22

)'xγ(sh

cZ
U)'xγ(chI)'x(I ⋅⋅⋅+⋅⋅=

1

22

Very important equations !!

Inpute impedance of a TL

1

1

I

U
Z in =

Transmission Line∼

B

B´A´

A

l

ZL

I2

1U 2UEg

I1
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Supposing the external impedance:
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Particular cases for the input impedances:

a) TL in short circuit: 0→LZ )lγ(thcZ
)lγ(ch

)lγ(sh
cZZ in ⋅⋅=

⋅

⋅
⋅=

0

b) TL in open circuit: ∞→LZ
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⋅
⋅=

⋅

⋅
⋅=

1

If we take into account both particular cases:
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c) TL closed on the characteristic impedance: CZZ L =

cZ
)lγ(shcZ)lγ(chcZ

)lγ(shcZ)lγ(chcZ
cZZ in =

⋅⋅+⋅⋅

⋅⋅+⋅⋅
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Lossless Transmission Line

( ) ( ) 000000 CLjCjGLjR ⋅ω=ω+⋅ω+=γ

)resitivepur(real
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LjR
Z c ==

ω+

ω+
=

0
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If the line is lossless, then R0 = G0 = 0, therefore:
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=Where v is the velocity of the wave:

The inpute impedance of a losseless TL
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⋅β=⋅β⋅=⋅

Particular cases:

a)  The length of the TL is equal with a quarter of the wave length: 

4

λ
=l
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If, ZL = inductive Zin will be capacitive and

ZL = capacitive Zin will be inductive

• So, that a losselessTL having the length equal with a quarter 

of the wave length will act as a impedance transformer

Particular cases:

b)  The length of the TL is equal with a half of the wave length: 
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• So, that a losselessTL having the length equal with a half of 

the wave length will act as a impedance adaptor
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Semi-Infinite Line

Vg

Suppose that the line extends to infinite along + x. Therefore, the backward 

propagating waves do not exist. We obtain:

γγγγ is complex so that:

iUdU)x(U += ( ) idid

c

IIUU
Z

I −=−⋅=
1

x
eAdU)x(U

⋅γ−
⋅==

0
x

∼ 0dU

Zg 0dI

0=
i

U 0=iI

c

d
d

Z

U
I =

xjx
e

j
eU

x
eU)x(dU d

dd
⋅β⋅−⋅α−

⋅
γ⋅

⋅=
⋅γ−

⋅= 0
00

)xtsin(xeU)t,x(
d

u dd 02
0

γ+⋅β−ω⋅⋅α−⋅⋅=

)xtsin(xeI)t,x(
d

i dd
ϑ+γ+⋅β−ω⋅⋅α−⋅⋅= 02

0

xjx
e

j
eU

x
eU)x(dU d

dd
⋅β⋅−⋅α−

⋅
γ⋅

⋅=
⋅γ−

⋅= 0
00

The instantaneous direct voltage and current are

ud(x,t)

x

t = t1 t = t1+ ∆t

( )doxβωtsin γ+−

xα
e

−

Amplitude: decay according to exp(-αx), therefore α is the 

amplitude decay constant of the wave
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The instantaneous inverse voltage and current:

)xtsin(xeU)t,x(
i

u ii 02
0

γ+⋅β+ω⋅⋅α⋅⋅=

)ixtsin(xeI)t,x(
i
i ii

ϑ+γ+⋅β+ω⋅⋅α⋅⋅= 02
0

( ) 00 =γ+β+ω ixt
dt

d
di v

β

ω
 

dt

xd
v =−=−=

Amplitude: decay according to exp(αx), therefore α is the 

amplitude decay constant of the wave

Phase Velocity

Definition: The velocity at which the phase of the wave travels

Let us observe a point of constant phase such that:

const xβωt =−

Take derivative with respect to time t: 0=−  
dt

xd
βω

Re-arrange so that that phase velocity is expressed as:

β

ω
 

dt

xd
vd ==

• which is a function of frequency and dependent on the physical 

properties of the transmission line through β.
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Heaviside TL conditions
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Important !!!!

Heaviside TL conditions
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TL without distortions !!!!!


