Transmission Lines

Topics of the course

- Limitation of the circuit theory
- Definition \& types of transmission lines (TL)
- Primary TL parameters
- The distributed-element model of TL
- The first order equations (and second) of TL
- Derivation of power equation
- Steady-state TL equations.
- Equivalent TL equations
- Semi-infinite TL
- Heaviside TL conditions

Limitations of the circuit theory

At low frequencies, circuit theory is generally adequate to explain the behavior of collections of electronic components interconnected by wires. Such circuits are modeled using: lumped circuits.

As frequency increases, the circuit approximation becomes progressively less good, for a number of reasons:

- the energy stored in reactive components is held in the space around the components, and different components can have "fields" which overlap;
- wires are also reactive components which store energy;
- the division of the circuit into separate reactive components interconnected by non-reactive "wires" is only an approximation.

Lumped circuits

- Assumes that the entire circuit is at a single point (lumped).
- This means that circuit component dimensions are unimportant.
- Voltage \& current do not vary across the component.
- Voltage applied at one point, the rest of the circuit reacts instantly.
- We don't have to consider travel time of the signal across components.
- Typical lumped elements are resistors, capacitors, inductors.

The Lumped-Element Model

- Lumped-element model for the entire transmission as seen from $\mathrm{A}-\mathrm{A}^{\prime}$ and $\mathrm{B}-\mathrm{B}^{\prime}$:

$$
\begin{array}{ll}
\mathrm{i}_{1}=\mathrm{i}_{2} \\
\mathrm{u}_{1}=\mathrm{u}_{2} & (\mathrm{KCL}) \\
\mathrm{KVL})
\end{array}
$$

Valid only if
1 (length of the line) $\ll \lambda$ (wavelength of the signal)

Light speed

But \qquad the speed of light is finite and electromagnetic signals (in free space) travel at the light speed.

$$
\mathrm{c}_{0}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

In practical transmission systems the actual speed of the signal is determined by electrical and magnetic properties of the surrounding media and the geometry of the conductors.

So what does a distributed circuit look like?

When do we use
 lumped/distributed analysis?

For steady state sinusoidal applications we can look at the one way propagation delay time t_{d}.
Say we have an excitation $\quad e_{\text {in }}=E \cdot \sqrt{2} \cdot \sin (\omega t)$
Then the voltage at a distance of ℓ is delayed by $\mathrm{t}_{\mathrm{d}}=\ell / v$
This voltage is:

$$
\begin{array}{rlr}
u_{\ell}(t) & =E \cdot \sqrt{2} \cdot \sin \left[\omega\left(t-t_{d}\right)\right] & \begin{array}{l}
T=1 / \mathrm{f} \\
=\text { period }
\end{array} \\
& =E \cdot \sqrt{2} \cdot \sin \left[\omega t-2 \pi \frac{t_{d}}{T}\right] &
\end{array}
$$

The delay is dependent with the frequencies !!

Two options

1. $\mathrm{t}_{\mathrm{d}} \ll \mathrm{T}$

Then voltage at ℓ is almost the same as the input voltage.

- treat the line as a lumped system.

2. t_{d} comparable to T

In this case the voltage down the line can be quite
different e.g. at $\mathrm{t}_{\mathrm{d}}=0.5 \mathrm{~T}, \mathrm{u}_{\ell}=-\mathrm{E}_{\mathrm{in}}-$ distributed system.

Rules:

Use lumped analysis when:

- $t_{d}<0.1 T$, or more stringently when $t_{d}<0.01 T$ or equivalent
- the wavelength of the electromagnetic signal is comparable with the geometric length of the line:

$$
\lambda=c \cdot T=\frac{c}{f}=\frac{3 \times 10^{8}}{f}[\mathrm{~m}]
$$

Maximum lengths for lumped applications

Application	Frequency	Wavelength $\lambda=\frac{3 \times 10^{8}}{f}$	Max length (based on $\mathrm{t}_{\mathrm{d}}=$ $0.01 \mathrm{~T})$
Power Transmission	50 Hz	6.000 km	60 km
Telephone	1 kHz	300 km	3 km
TV	150 Mhz	2 m	2 cm
Radar/Microwave	10 GHz	3 cm	0.3 mm
Visible light	$5 \times 1014 \mathrm{~Hz}$	600 nm	6 nm

Introduction

The term transmission line is usually reserved for structures that are at least a significant fraction of a wavelength in length and have uniform electromagnetic properties along their length.
Examples are as follows:

- coaxial lines: flexible, semi flexible or rigid with solid insulation, perforated insulation or air-spaced;
- parallel pair of conductors: parallel wires (air-spaced, insulated); parallel tracks on an insulating substrate;
- strip-line: microstrip (in microwave integrated circuits): conducting strips insulated from a conducting ground plane;
- waveguides: hollow metal pipes (commonly of rectangular cross-section).

Main remarks about TL

- Definition:

Structures used to transmit energy or signal in the form of guided-wave electromagnetic fields from one place to another.

- Modeling:

Distributed-element model
Electromagnetic model (Maxwell equations)

- Key Concepts:

Waves and properties

Different Types of Transmission Lines

(d) Strip line
 (c) Microstrip line

TEM Transmission Lines

Higher Order Transmission Lines

Types of Transmission lines (cont)

The Distributed-Element TL Model

1. Divide the entire transmission line into segments with length $\Delta \mathrm{x} \ll \lambda$
2. For each segment, postulate the lumped elements related to the series resistance, the parallel capacitance, the series inductance, and the parallel conductance.

Distributed element-model

Inductance and Capacitance are the most important parameters.

The current in the line sets a field and induces a voltage $\left(L_{0} \frac{d i}{d t}\right)$
The capacitance exists between the lines.
Both $\mathrm{L}_{0} \& \mathrm{C}_{0}$ are distributed along the line.
Both are not perfect, some attenuation $\left(\mathrm{R}_{0} \& \mathrm{G}_{0}\right)$ always exists.

The primary TL parameters

Any (two-wire) transmission line has four fundamental electrical parameters. They are also called primary line parameters (constants):

- R_{0}, the series resistance: $\operatorname{R}_{0}=\lim _{\Delta x \rightarrow 0} \frac{\Delta R}{\Delta x}$
- L_{0}, the series inductance: $\quad L_{0}=\lim _{\Delta x \rightarrow 0} \frac{\Delta L}{\Delta x}$
- C_{0}, the shunt capacitance:

$$
C_{0}=\lim _{\Delta x \rightarrow 0} \frac{\Delta C}{\Delta x}
$$

- G_{0}, the shunt conductance (or leakage): $G_{0}=\lim _{\Delta x \rightarrow 0} \frac{\Delta G}{\Delta x}$

In general, these lines parameters are referred to a loop or pair of wires of fixed length or per unit length of line.

Transmission line equations

Consider one segment at position x along the line:

R_{0} : the resistance of the conductors per unit length in Ω / m;
L_{0} : the inductance of the conductors per unit length in H / m;
G_{0} : the conductance of the insulation medium per unit length in $1 / \Omega \mathrm{m}$;
C_{0} : the capacitance of the conductors per unit length in F / m.
Next Step: To establish relations among the currents and the voltages at x and $\mathrm{x}+\Delta \mathrm{x}$

By application of KVL:

$$
-u(x, t)+u(x+\Delta x, t)+R_{0} \cdot \Delta x \cdot i+L_{0} \cdot \Delta x \cdot \frac{\partial}{\partial t} i=0
$$

but:

$$
u(x+\Delta x, t)=u(x, t)+\frac{\partial u}{\partial x} \cdot \Delta x
$$

Divided by Δx and let $\Delta x \rightarrow 0$

$$
-\frac{\partial u}{\partial x}=R_{0} \cdot i+L_{0} \cdot \frac{\partial i}{\partial t}
$$

First order telegrapher's equations

$-i(x, t)+i(x+\Delta x, t)+G_{0} \cdot \Delta x \cdot u+C_{0} \cdot \Delta x \cdot \frac{\partial}{\partial t} u=0$					
$i(x+\Delta x, t)=i(x, t)+\frac{\partial i}{\partial x} \cdot \Delta x \quad-\frac{\partial i}{\partial x}=G_{0} \cdot u+C_{0} \cdot \frac{\partial u}{\partial t}$ First order telegrapher's equations					

Comments on the TL equations

$-\frac{\partial u}{\partial x}=R_{0} \cdot i+L_{0} \cdot \frac{\partial i}{\partial t}$

$$
-\frac{\partial i}{\partial x}=G_{0} \cdot u+C_{0} \cdot \frac{\partial u}{\partial t}
$$

- both equations, within the level of approximations, are partial differential equations (PDE) that governing the voltage and the current along the transmission lines.
- the line primary parameters $R_{0}, L_{0}, G_{0}, C_{0}$ are related to the physical properties of the transmission line and may be functions of position x.
- give the line parameters, solutions of the equations describe the voltage and the current along the transmission lines

Second order telegrapher's equation

$-\frac{\partial u}{\partial x}=R_{0} \cdot i+L_{0} \cdot \frac{\partial i}{\partial t}$
$-\frac{\partial^{2} u}{\partial x^{2}}=R_{0} \cdot \frac{\partial i}{\partial x}+L_{0} \cdot \frac{\partial^{2} i}{\partial t \cdot \partial x}=-\frac{\partial^{2} i}{\partial t}=G_{0} \cdot u+C_{0} \cdot \frac{\partial u}{\partial t}$
$-\frac{\partial^{2} u}{\partial x^{2}}=R_{0} \cdot\left(-G_{0} \cdot u-C_{0} \cdot \frac{\partial u}{\partial t}+C_{0} \cdot \frac{\partial^{2} u}{\partial t^{2}}\right.$
$\frac{\partial^{2} u}{\partial x^{2}}=R_{0} \cdot G_{0} \cdot u+\left(R_{0} \cdot C_{0}+G_{0} \cdot L_{0}\right) \cdot \frac{\partial u}{\partial t}+L_{0} \cdot C_{0} \cdot \frac{\partial^{2} u}{\partial t^{2}}$

$$
\frac{\partial^{2} i}{\partial x^{2}}=R_{0} \cdot G_{0} \cdot i+\left(R_{0} \cdot C_{0}+G_{0} \cdot L_{0}\right) \cdot \frac{\partial i}{\partial t}+L_{0} \cdot C_{0} \cdot \frac{\partial^{2} i}{\partial t^{2}}
$$

Wave Equations for Lossless Transmission Line

If the line is lossless, then $\mathrm{R}_{\mathbf{0}}=\mathrm{G}_{\mathbf{0}}=0$, therefore:

$$
\frac{\partial^{2} i}{\partial x^{2}}=L_{0} \cdot C_{0} \cdot \frac{\partial^{2} i}{\partial t^{2}}=\frac{1}{v^{2}} \cdot \frac{\partial^{2} i}{\partial t^{2}} \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{v^{2}} \cdot \frac{\partial^{2} u}{\partial t^{2}}
$$

$$
v=\frac{1}{\sqrt{L_{0} \cdot C_{0}}}
$$

The velocity of the propagating wave
Conclusion: The voltage and the current travel along the transmission line are governed by the wave equations

Solutions of the Wave Equation for Loss less Transmission Line

$$
\begin{array}{r}
u(x, t)=u_{d}\left(t-\frac{x}{v}\right)+u_{i}\left(t+\frac{x}{v}\right) \quad \text { Eq. } 1 \\
i(x, t)=i_{d}\left(t-\frac{x}{v}\right)+i_{i}\left(t+\frac{x}{v}\right) \quad \text { Eq. } 22
\end{array}
$$

$u_{d}\left(t-\frac{x}{v}\right)$ and $i_{d}\left(t-\frac{z}{v}\right)$ Forward propagating wave
$u_{i}\left(t+\frac{x}{v}\right)$ and $i_{i}\left(t+\frac{x}{v}\right)$ Backward propagating wave

Conclusion: The total voltage and the current are sum of the forward and the backward propagating waves along the transmission line as expressed in (1-2).

Example: Forward Propagating Wave

Derivation of the Power Equation

Multiply eq. (1) by $i(x, t)$ and eq. (2) by $u(x, t)$, add:

(1) $-\frac{\partial u}{\partial x}=R_{0} \cdot i+L_{0} \cdot \frac{\partial i}{\partial t} \quad-\frac{\partial i}{\partial x}=G_{0} \cdot u+C_{0} \cdot \frac{\partial u}{\partial t}$

$$
-\frac{\partial u}{\partial x} \cdot i=R_{0} \cdot i^{2}+L_{0} \cdot i \cdot \frac{\partial i}{\partial t} \quad-\frac{\partial i}{\partial x} \cdot u=G_{0} \cdot u^{2}+C_{0} \cdot u \cdot \frac{\partial u}{\partial t}
$$

$$
-\frac{\partial}{\partial x}(u i)=R_{0} \cdot i^{2}+G_{0} \cdot u^{2}+\frac{\partial}{\partial t}\left(\frac{L_{0} \cdot i^{2}}{2}\right)+\frac{\partial}{\partial t}\left(\frac{C_{0} \cdot u^{2}}{2}\right)
$$

$$
-\frac{\partial p}{}=p \quad+\frac{\partial W}{} p=u \cdot i \quad \text { Total Power }
$$

$$
\frac{\partial P}{\partial x}=p_{d}+\frac{w}{\partial t} \quad p=R_{0} \cdot i^{2}+G_{0} \cdot u^{2} \quad \text { Power Dissipation }
$$

$$
W=\frac{1}{2} \cdot\left(L_{0} \cdot i^{2}+C_{0} \cdot u^{2}\right) \text { Stored EM Energy }
$$

Net Power Flow = Power Dissipation + Change in Stored Energy!

$$
\begin{aligned}
& -\frac{\partial u}{\partial x}=R_{0} \cdot i+L_{0} \cdot \frac{\partial i}{\partial t} \\
& -\frac{\partial i}{\partial x}=G_{0} \cdot u+C_{0} \cdot \frac{\partial u}{\partial t}=R_{0} \cdot \underline{I}+j \omega L_{0} \cdot \underline{I}=\left(R_{0}+j \omega L_{0}\right) \cdot \underline{I} \\
& \hline \frac{d \underline{I}}{d x}=\left(G_{0}+j \omega C_{0}\right) \cdot \underline{U}
\end{aligned}
$$

Comments on the steady-state TL equations

- Both equations are ordinary differential equations (ODE) governing the complex voltage and the current $\underline{U}(x)$ and $\underline{I}(x)$ along the TL.
- The complex $\underline{\mathrm{U}}(\mathrm{x})$ and $\underline{\mathrm{I}}(\mathrm{x})$ have no direct physical meaning. On the other hand, once the complex $\underline{\mathbb{U}}$ and \underline{I} are known, the physical timedependent, real solutions can be obtained.

Procedure for Sinusoidal Steady State Solutions

Convert to

Complex Domain \longrightarrow\begin{tabular}{c}
Solve

Complex Equations

\Rightarrow

Convert to

Real Domain
\end{tabular}

Steady-state TL equations (cont)

$-\frac{d \underline{U}}{d x}=\left(R_{0}+j \omega L_{0}\right) \cdot \underline{I}$
(4) $-\frac{d \underline{I}}{d x}=\left(G_{0}+j \omega C_{0}\right) \cdot \underline{U}$

If $R_{0}, L_{0}, G_{0}, C_{0}$ are all constants of \boldsymbol{x} (homogeneous TL), then by taking derivative of (4) and making use of (5), we have:
$\frac{d \underline{U^{2}}}{d x^{2}}=\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right) \cdot \underline{U} \rightarrow \frac{d \underline{U}^{2}}{d x^{2}}-\underline{\gamma}^{2} \cdot \underline{U}=0$
Similarly, we have:

$$
\begin{array}{r}
\frac{\frac{d \underline{I}^{2}}{d x^{2}}=\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right) \cdot \underline{I}}{\underline{\gamma}} \Rightarrow \sqrt{\frac{d \underline{I}^{2}}{d x^{2}}-\underline{\gamma}^{2} \cdot \underline{I}=0} \\
\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right)
\end{array}
$$

Complex propagation constant in $1 / \mathrm{m}$

$\underline{\gamma}=\sqrt{\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right)}=\alpha+j \beta$	
$\begin{aligned} & \alpha=\text { attenuation constant } \\ & {[\alpha]_{\mathrm{SI}}=\frac{1 \text { Neper }}{1 m}=\frac{1 \mathrm{~Np}}{1 m}} \end{aligned}$	$\beta=$ phase constant $[\beta]=\frac{1 \mathrm{rad}}{1 \mathrm{~m}}$
$\begin{array}{lll}\underline{Z}_{0}=R_{0}+j \omega L_{0} & \text {,longitudinal } & \text { impedance } \\ \underline{Y}_{0}=G_{0}+j \omega C_{0} & \text {,transversal } & \text { admitances }\end{array}$	
$\underline{\mathrm{Z}}_{0}$$\underline{Y}_{0}$	

The expression for the attenuation and phase constants with respect with the primary TL parameters

$$
\begin{array}{r}
\alpha=\sqrt{\frac{1}{2}\left(Z_{0} Y_{0}+R_{0} G_{0}+\omega^{2} L_{0} C_{0}\right)} \\
\beta=\sqrt{\frac{1}{2}\left(Z_{0} Y_{0}+\omega^{2} L_{0} C_{0}-R_{0} G_{0}\right)}
\end{array}
$$

Where Z_{0} and Y_{0} are:

$$
Z_{0}=\sqrt{R_{0}^{2}+\omega^{2} L_{0}^{2}}, \quad Y_{0}=\sqrt{G_{0}^{2}+\omega^{2} C_{0}^{2}}
$$

General Solutions

$$
\begin{gathered}
\frac{\frac{d \underline{U}^{2}}{d x^{2}}-\underline{\gamma}^{2} \cdot \underline{U}=0}{\underline{U}(x)=\underline{A} \cdot e^{-\underline{\gamma} \cdot x}+\underline{B} \cdot e^{+\underline{\gamma} \cdot x}} \\
-\underline{U}(x)=\underline{U} d+\underline{U}_{i} \\
-\frac{d \underline{U}}{d x}=\left(R_{0}+j \omega L_{0}\right) \cdot \underline{I}=\underline{A} \cdot \underline{\gamma} \cdot e^{-\underline{\gamma} \cdot x}-\underline{B} \cdot \underline{\gamma} \cdot e^{+\underline{\gamma} \cdot x}
\end{gathered}
$$

$$
\underline{I}=\frac{1}{\left(R_{0}+j \omega L_{0}\right)} \cdot\left(\underline{A} \cdot \underline{\gamma} \cdot e^{-\underline{\gamma} \cdot x}-\underline{B} \cdot \underline{\gamma} \cdot e^{+\underline{\gamma} \cdot x}\right)
$$

$$
\underline{I}=\frac{\underline{\gamma}}{\left(R_{0}+j \omega L_{0}\right)} \cdot\left(\underline{U}_{d}-\underline{U}_{i}\right)=\frac{1}{\underline{Z}_{c}} \cdot\left(\underline{U}_{d}-\underline{U}_{i}\right)=\underline{I}_{d}-\underline{I}_{i}
$$

Physical Meaning of the General Solution:

- the total voltage/current are sum of the forward (exp[- $2 x])$ and the backward $(\exp [+\chi x])$ propagating wates:

$$
\underline{U}(x)=\underline{U}_{d}+\underline{U}_{i}
$$

- the forward propagating voltage (or current) waves $\underline{U}_{d}\left(\right.$ or \underline{I}_{d}) are also called the direct voltage (or current) waves;
- the backward propagating voltage (or current) waves $\underline{U}_{i}\left(\right.$ or $\left.\underline{I}_{i}\right)$ are also called the inverse voltage (or current) waves;

Relationship between $\underline{U}_{d}, \underline{U}_{i}$ and $\underline{I}_{d}, \underline{I}_{i}$

$$
\frac{\underline{\underline{U}_{d}}}{\underline{I}_{d}}=-\frac{\underline{U}_{i}}{\underline{I}_{i}}=\sqrt{\frac{R_{0}+j \omega L_{0}}{G_{0}+j \omega \omega_{0}}}=\underline{Z}_{c}
$$

\underline{Z} c: the characteristic impedance of the transmission line (Ω)

The secondary TL parameters

Complex propagation constant

$$
\underline{\gamma}=\sqrt{\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right)}
$$

Characteristic impedance (Ω)

$$
\underline{Z}_{c}=\sqrt{\frac{R_{0}+j \omega L_{0}}{G_{0}+j \omega \omega_{0}}}=\sqrt{\frac{\underline{\underline{Z}}_{0}}{\underline{\underline{Y}}_{0}}}
$$

Where:

- \underline{Z}_{0} is the longitudinal impedance
- \underline{Y}_{0} is the transversal admittance

$$
\underline{U}(x)=\underline{A} \cdot e^{-\underline{\gamma} \cdot x}+\underline{B} \cdot e^{+\underline{\gamma} \cdot x}
$$

Only two knowns \underline{A} and \underline{B} remain to be determined!

Equivalent TL equations

1) Suppose that the voltage and the current for $x=0$ are known:
$\underline{U}_{1} \quad \underline{I}_{1}$
$\underline{U}_{1}(0)$ and $\underline{I}_{1}(0)$

$$
\begin{array}{l|}
\qquad \begin{array}{ll}
\underline{A}+\underline{B}=\underline{U}_{1} \\
\underline{A-B}=\underline{Z}_{c} \cdot \underline{I}_{1}
\end{array} \\
\text { Finally: }
\end{array}
$$

$\underline{U}(x)=\left(\frac{\underline{U}_{1}+\underline{I}_{1} \cdot \underline{Z}_{c}}{2}\right) \cdot e^{-\underline{\gamma} \cdot x}+\left(\frac{\underline{U}_{1}-\underline{I}_{1} \cdot \underline{Z}_{c}}{2}\right) \cdot e^{+\underline{\gamma} \cdot x}$

$$
\underline{I}(x)=\frac{1}{\underline{Z}_{c}}\left\{\left(\frac{\underline{U}_{1}+\underline{I}_{1} \cdot \underline{Z}_{c}}{2}\right) \cdot e^{-\underline{\gamma} \cdot x}-\left(\frac{\underline{U}_{1}-\underline{I}_{1} \cdot \underline{Z}_{c}}{2}\right) \cdot e^{+\underline{\gamma} \cdot x}\right\}
$$

$$
\underline{U}(x)=\underline{U}_{1} \cdot \operatorname{ch}(\underline{\gamma} \cdot x)-\underline{I}_{1} \cdot \underline{Z}_{c} \cdot \operatorname{sh}(\underline{\gamma} \cdot x)
$$

$$
\underline{I}(x)=\underline{I}_{1} \cdot \operatorname{ch}(\underline{\gamma} \cdot x)-\underline{U}_{1} \cdot \frac{1}{\underline{Z}_{c}} \cdot \operatorname{sh}(\underline{\gamma} \cdot x)
$$

2) Suppose that the voltage and the current for $x=l$ are known

$$
\underline{U}\left(x^{\prime}\right)=\underline{U}_{2} \cdot \operatorname{ch}\left(\underline{\gamma} \cdot x^{\prime}\right)+\underline{I}_{2} \cdot \underline{Z}_{c} \cdot \operatorname{sh}\left(\underline{\gamma} \cdot x^{\prime}\right)
$$

$$
\underline{I}\left(x^{\prime}\right)=\underline{I}_{2} \cdot \operatorname{ch}\left(\underline{\gamma} \cdot x^{\prime}\right)+\underline{U}_{2} \cdot \frac{1}{\underline{Z}_{c}} \cdot \operatorname{sh}\left(\underline{\gamma} \cdot x^{\prime}\right)
$$

Very important equations !!
Inpute impedance of a TL

$$
\underline{Z}_{i n}\left(x^{\prime}=l\right)=\frac{\underline{U}_{1}}{\underline{I}_{1}}=\frac{\underline{U}_{2} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{I}_{2} \cdot \underline{Z}_{c} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)}{\underline{I}_{2} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{U}_{2} \cdot \frac{1}{\underline{Z}_{c}} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)}
$$

Supposing the external impedance: $\underline{Z}_{L}=\frac{\underline{U}_{2}}{\underline{I}_{2}}$

$$
\underline{Z}_{i n}=\frac{\underline{Z}_{L} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{Z}_{c} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)}{\operatorname{ch}(\underline{\gamma} \cdot l)+\frac{\underline{Z}_{L}}{\underline{Z}_{c}} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)}=\underline{Z}_{c} \cdot \underline{Z}_{L} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{Z}_{C} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)
$$

Particular cases for the input impedances:
a) TL in short circuit: $\underline{Z}_{L} \rightarrow 0$

$$
\underline{Z}^{0}{ }_{i n}=\underline{Z}_{c} \cdot \frac{\operatorname{sh}(\underline{\gamma} \cdot l)}{\operatorname{ch}(\underline{\gamma} \cdot l)}=\underline{Z}_{c} \cdot \operatorname{th}(\underline{\gamma} \cdot l)
$$

b) TL in open circuit: $\underline{Z}_{L} \rightarrow \infty$

$$
\underline{Z}^{s c}{ }_{i n}=\underline{Z}_{c} \cdot \frac{\operatorname{ch}(\underline{\gamma} \cdot l)}{\operatorname{sh}(\underline{\gamma} \cdot l)}=\underline{Z}_{c} \cdot \frac{1}{\operatorname{th}(\underline{\gamma} \cdot l)}
$$

If we take into account both particular cases:

$$
\begin{aligned}
& \underline{Z}^{0}{ }_{i n} \cdot \underline{Z}^{s c}{ }_{i n}=\underline{Z}_{\mathcal{C}}^{2} \Rightarrow \underline{Z}_{\mathcal{C}}=\sqrt{\underline{Z}_{i n}^{0} \cdot \underline{\underline{Z}}^{s c}{ }_{i n}} \\
& \frac{\underline{\underline{Z}}_{i n}^{0}}{\underline{\underline{Z}}^{\text {sc }}}{ }_{\text {in }}=(\operatorname{th}(\underline{\gamma} \cdot l))^{2} \Rightarrow \underline{\gamma} \cdot l=\arg \operatorname{th} \sqrt{\frac{\underline{Z}^{0}}{\underline{Z}^{s c}}}{ }_{i n} \\
& \underline{\underline{\gamma}}=\alpha+\beta j=\frac{1}{l} \cdot \arg \operatorname{th} \sqrt{\frac{\underline{\underline{Z}}^{0}{ }_{i n}}{\underline{\underline{Z}}^{s c}}}
\end{aligned}
$$

c) TL closed on the characteristic impedance: $\underline{Z}_{L}=\underline{Z}_{C}$

$$
\underline{Z}_{i n}=\underline{Z}_{c} \cdot \frac{\underline{Z}_{c} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{Z}_{c} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)}{\underline{Z}_{c} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{Z}_{c} \cdot \operatorname{sh}(\underline{\gamma} \cdot l)}=\underline{Z}_{c}
$$

Lossless Transmission Line

If the line is lossless, then $\mathbf{R}_{\mathbf{0}}=\mathbf{G}_{\mathbf{0}}=\mathbf{0}$, therefore:

$$
\underline{Z}_{c}=\sqrt{\frac{R_{0}+j \omega L_{0}}{G_{0}+j \omega C_{0}}}=\sqrt{\frac{L_{0}}{C_{0}}}=\text { real (pur resitive) }
$$

$$
\underline{\gamma}=\sqrt{\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right)}=j \omega \sqrt{L_{0} \cdot C_{0}}
$$

$$
\Omega
$$

$$
\underline{\gamma}=\alpha+j \beta=j \omega \sqrt{L_{0} \cdot C_{0}}
$$

$$
\alpha=0
$$

$$
\beta=\omega \sqrt{L_{0} \cdot C_{0}}=2 \pi f \sqrt{L_{0} \cdot C_{0}}=\frac{2 \pi}{v} \cdot f=\frac{2 \pi}{v} \cdot \frac{1}{T}=\frac{2 \pi}{\lambda}
$$

Where v is the velocity of the wave:

$$
v=\frac{1}{\sqrt{L_{0} \cdot C_{0}}}
$$

The inpute impedance of a losseless TL

$$
\begin{gathered}
\underline{Z}_{i n}=\underline{Z}_{c} \cdot \underline{Z}_{L} \cdot \operatorname{ch}(\underline{\gamma} \cdot l)+\underline{Z}_{c} \cdot \operatorname{sh}(\underline{\gamma} \cdot l) \\
\underline{\underline{\gamma}} \cdot l)+\underline{Z}_{L} \cdot \operatorname{sh}(\underline{\gamma} \cdot l) \\
\begin{array}{l}
\operatorname{ch}(\underline{\gamma} \cdot l)=\operatorname{ch}(j \cdot \beta \cdot l)=\cos (\beta \cdot l) \\
\operatorname{sh}(\underline{\gamma} \cdot l)=\operatorname{sh}(j \cdot \beta \cdot l)=j \cdot \sin (\beta \cdot l)
\end{array} \\
\underline{Z}_{i n}=\sqrt{\frac{L_{0}}{C_{0}}} \cdot \frac{\underline{Z}_{L} \cdot \cos (\beta \cdot l)+\underline{Z}_{c} \cdot j \cdot \sin (\beta \cdot l)}{\underline{Z}_{c} \cdot \cos (\beta \cdot l)+\underline{Z}_{L} \cdot j \cdot \sin (\beta \cdot l)}
\end{gathered}
$$

Particular cases:

a) The length of the TL is equal with a quarter of the wave length:

$$
l=\frac{\lambda}{4}
$$

$$
\begin{gathered}
\underline{Z}_{i n}=\sqrt{\frac{L_{0}}{C_{0}}} \cdot \frac{\underline{Z}_{L} \cdot \cos \left(\beta \cdot \frac{\lambda}{4}\right)+\underline{Z}_{c} \cdot j \cdot \sin \left(\beta \cdot \frac{\lambda}{4}\right)}{\underline{Z}_{c} \cdot \cos \left(\beta \cdot \frac{\lambda}{4}\right)+\underline{Z}_{L} \cdot j \cdot \sin \left(\beta \cdot \frac{\lambda}{4}\right)} \\
\beta=\omega \sqrt{L_{0} \cdot C_{0}}=2 \pi f \sqrt{L_{0} \cdot C_{0}}=\frac{2 \pi}{v} \cdot \frac{1}{T}=\frac{2 \pi}{\lambda} \Rightarrow \sqrt{\beta \cdot \lambda=2 \pi} \\
\underline{Z}_{i n}=\sqrt{\frac{L_{0}}{C_{0}} \cdot \frac{\underline{Z}_{L} \cdot \cos \left(\frac{\pi}{2}\right)+\underline{Z}_{c} \cdot j \cdot \sin \left(\frac{\pi}{2}\right)}{2}=\sqrt{\frac{L_{0}}{C_{0}} \cdot \frac{Z_{C}}{} \cdot j} \underline{Z}_{L} \cdot j}=\frac{L_{0}}{C_{0}} \cdot \frac{1}{Z_{L}}
\end{gathered}
$$

If, $\underline{\mathbf{Z}}_{\mathrm{L}}=$ inductive $\underline{\mathbf{Z}}_{\text {in }}$ will be capacitive and
$\underline{Z}_{L}=$ capacitive $\underline{Z}_{\text {in }}$ will be inductive

- So, that a losselessTL having the length equal with a quarter of the wave length will act as a impedance transformer

Particular cases:

b) The length of the TL is equal with a half of the wave length:

$$
\begin{gathered}
\boxed{l=\frac{\lambda}{2}} \\
\underline{Z}_{i n}=\sqrt{\frac{L_{0}}{C_{0}} \cdot \underline{Z}_{L} \cdot \cos (\beta \cdot l)+\underline{Z}_{c} \cdot j \cdot \sin (\beta \cdot l)} \\
\square \\
\underline{Z}_{i n}=\sqrt{\frac{L_{0}}{C_{0}}} \cdot \frac{Z_{L}}{\underline{Z}_{C} \cdot \cos \left(\beta \cdot \cos (\pi)+\underline{Z}_{C} \cdot j \cdot \underline{Z}_{L} \cdot j \cdot \sin (\pi)\right.}=\sqrt{\frac{L_{0}}{C_{0}}} \cdot \frac{\underline{Z}_{L}}{\underline{Z}_{c}}=\underline{Z}_{L}
\end{gathered}
$$

- So, that a losselessTL having the length equal with a half of the wave length will act as a impedance adaptor

$$
\underline{U}_{d}(x)=\underline{U}_{d 0} \cdot e^{-\underline{\gamma} \cdot x}=U_{d 0} \cdot e^{j \cdot \gamma_{d 0}} \cdot e^{-\alpha \cdot x-j \cdot \beta \cdot x}
$$

The instantaneous direct voltage and current are

$$
u_{d}(x, t)=U_{d 0} \cdot \sqrt{2} \cdot e^{-\alpha \cdot x} \cdot \sin \left(\omega t-\beta \cdot x+\gamma_{d 0}\right)
$$

$$
i_{d}(x, t)=I_{d 0} \cdot \sqrt{2} \cdot e^{-\alpha \cdot x} \cdot \sin \left(\omega t-\beta \cdot x+\gamma_{d 0}+\vartheta\right)
$$

Amplitude: decay according to $\exp (-\alpha x)$, therefore α is the amplitude decay constant of the wave

The instantaneous inverse voltage and current:

$$
\begin{gathered}
u_{i}(x, t)=U_{i 0} \cdot \sqrt{2} \cdot e^{\alpha \cdot x} \cdot \sin \left(\omega t+\beta \cdot x+\gamma_{i 0}\right) \\
i_{i}(x, t)=I_{i 0} \cdot \sqrt{2} \cdot e^{\alpha \cdot x} \cdot \sin \left(\omega t+\beta \cdot x+\gamma_{i 0}+\vartheta i\right) \\
\frac{d}{d t}\left(\omega t+\beta x+\gamma_{i 0}\right)=0 \longrightarrow v_{i}=-\frac{d x}{d t}=-\frac{\omega}{\beta}=v_{d}
\end{gathered}
$$

Amplitude: decay according to $\exp (\alpha x)$, therefore α is the amplitude decay constant of the wave

Phase Velocity

Definition: The velocity at which the phase of the wave travels
Let us observe a point of constant phase such that:

$$
\omega t-\beta x=\text { const }
$$

Take derivative with respect to time $\mathrm{t}: \quad \omega-\beta \frac{d x}{d t}=0$
Re-arrange so that that phase velocity is expressed as:

$$
v_{d}=\frac{d x}{d t}=\frac{\omega}{\beta}
$$

- which is a function of frequency and dependent on the physical properties of the transmission line through β.

Heaviside TL conditions

$$
\begin{aligned}
& \text { If: } \begin{array}{l}
\frac{R_{0}}{L_{0}}=\frac{G_{0}}{C_{0}}
\end{array} \underline{\underline{\gamma}=\sqrt{\left(R_{0}+j \omega L_{0}\right) \cdot\left(G_{0}+j \omega C_{0}\right)}} \\
& \underline{\gamma}=\sqrt{R_{0} \cdot G_{0} \cdot\left(1+\frac{j \omega L_{0}}{R_{0}}\right) \cdot\left(1+\frac{j \omega C_{0}}{G_{0}}\right)}=\sqrt{R_{0} \cdot G_{0} \cdot\left(1+\frac{j \omega L_{0}}{R_{0}}\right)^{2}}= \\
& =\left(1+\frac{j \omega L_{0}}{R_{0}}\right) \cdot \sqrt{R_{0} \cdot G_{0}}=\sqrt{R_{0} \cdot G_{0}}+j \omega L_{0} \cdot \sqrt{\frac{G_{0}}{R_{0}}}=\sqrt{R_{0} \cdot G_{0}}+j \omega \sqrt{L_{0} \cdot C_{0}} \\
& \begin{array}{l}
\alpha=\sqrt{R_{0} \cdot G_{0}} \\
\beta=\omega \sqrt{L_{0} \cdot C_{0}}
\end{array} \text { Important !!!! }
\end{aligned}
$$

Heaviside TL conditions

TL without distortions !!!!!

