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Introduction notes

* Hans Christian Oersted discovered (in 1819) the magnetic
force of a current carrying wire

* The right-hand rule of current direction and magnetic
field direction

¢ André Marie Ampére measures
the magnetic force (1820-1825)
on a wire with current

= Jean-Baptiste Biot and Felix
Savart (1825) measured
accurately the magnetic field of
a current element

magnetic field lines

Magnetostatics fields

Our most familiar experience of magnetism is through permanent
magnets.

These are made of materials which exhibit a property we call
“ferromagnetism’ - i.e., they can be magnetized.

Depending on how we position two magnets, they will attract or repel,
i.e. they exert forces on each other.

Thus, a magnet must have an associated field: a magnetic field.

But we have not been able, so far, to isolate a magnetic monopole (the
equivalent of an electric charge).

We describe magnets as having two magnetic poles: North (N) and
South (8).

They also attract un-magnetized ferromagnetic materials.

We can map out the field of a magnet using either a small magnet or
small magnetic materials....
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The origin of magnetism lies in moving electric charges.
Moving (or rotating) charges generate magnetic fields.

An electric current generates a magnetic field.

A magnetic field will exert a force on a conductor that carries an
electric current.




* Stationary charge:

Magnetostatics fields

A stationary charge produces an electric
field only.

°vq=0

«E %0 B=0

A uniformly moving charge produces an

electric and magnetic field.
*v, #0 and v, = constant

*E#0 B =0
A accelerating charge produces an electric
and magnetic field and a radiating

° vq #0 and aq Z0 electromagnetic field.

*E#0 B #0 Radiating field

Units and definitions:
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Magnetic field vector
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B Magnetic induction
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Permeability
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Exact constant
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Permeability of free space

Relative permeability for a medium

Permeability of the medium

o) = )
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Relative permeability L. and susceptibility X,

Bismuth 0.99983
Mercury 0.999968
Gold 0.999964
Silver 0.99998
Lead 0.999983
Copper 0.999991
Water 0.999991
B Vacuum 1.000
Air 1.00000036
I Aluminium 1.000021
Palladium 1.00082
Cobalt 250
Nickel 600
Iron 6000

-1.66 E-4)
32E5
3.6E-5
2.60E-5 >
1.7E5
-0.98 E-5
-0.88 E-5)

onauseweI(]

0

3.6 E-7
25E-5
8.2E-4

onougewereq
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Magnetic forces
1. Lorentz force

If the charge is not moving with
respect to the magnetic field (or if the
charge moves parallel to the field).

°Q

oo

The force is zero.

If the charge is moving, there is a
> force on the charge, perpendicular
to both v and B.

P <i

l:al} I

=)

F=QvxB
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* As we saw, force is perpendicular to both v and B.
* The force is also largest for v perpendicular to B, smallest for v parallel
to B.

This can be summarized as:

F=Q -VxB or: F = QvBsiné

Units of Magnetic Field

B F
Qvsiné

B

Therefore the units of magnetic field are:

IN -1s
1C -1m =1T  (Tesla) (Note: 1 Tesla = 10,000 Gauss)
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The magnetic force is different from the electric force.
Whereas the electric force acts in the

same direction as the electric field: F=0Q-E

The magnetic force acts in a direction
orthogonal to the magnetic field:

Magnetostatics fields

2. Force on a current in a static magnetic field

The force magnitude 1s measured

togive: F,=ILB, N

and the direction is as shown.

The factor 5 is related to the !
strength of the magnetic field of

the permanent magnet.

m

Experiment 1

It was shown that the force magnitude is proportional to
the sine of the angle between the wire and the magnetic
field direction. Finally, in vector form: £, = [(LxB), N

The force does not depend on the position, which is to be
expected from a large flat field source (remember the infinite
charged sheet).




Magnetostatics fields

The above law is referred to as Ampere’s force law (or motor
equation). It is also valid for the force exerted by a constant
magnetic field B on a current element I -d s
dF, =1-(dsxB).N
The concept of current element is essential in the magnetic and
EM theory. It plays a role similar to that of a point charge in
electrostatics. The current element is an infinitesimally short
current carrier (e.g. piece of wire). It is specified by both, its
current [ and its line elementd s. The direction of the line
element 1s that of the current.

It can be shown that this law is directly related to the force with
which the magnetic field acts upon a charge O moving with a
velocity v .

Magnetostatics fields

The current element can be expressed via the current density J,

I -ds=J -dA-ds=1J -dv, Am

dF » = (7><§)-dv, N

We already known how to express the current density via the charge
density and velocity,

J=p, v, Alm?®

dF .= (p, dv)(vxB)

For any moving charge Q in a magnetic field, the magnetic force is

proportional to the amount of charge, to its velocity and to the strength

of the magnetic field:

dF.=0 (xB)
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[f one adds to that magnetic force the electrostatic force, one
arrives at the fundamental force equation in electromagnetics: the
Lorentz™ force equation:

F=F+7~:m=Q-(E+\7x§)

So far, the following has been established:
eThe field of a permanent magnet affects wires with current.
*The field of a permanent magnet does not affect charged wires.

*The direction of the magnetic field and the current is important:
the force is proportional to their cross product.

sThe force is proportional to the length of the current element.

Magnetostatics fields

3. Ampere’s force law between two wires with current

The next step in the study of magnetic fields was to establish
whether currents themselves can create the force field observed
with permanent magnets, and how this field would depend on
the parameters of the current element.

‘IWQ DE ) I Fm(:)[l [:C Z)Fg

Experiment 2
In 1820, Ampére measured the forces between two parallel
current-carrying wires of length L. He established that when
the currents had the same direction, the wires attracted each
other. On the contrary, when the currents were in opposite
directions, the wires repelled each other. The force magnitude
was measured to be:
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Il - -
f\‘ :\ 1 Question: determine F,_,
4 12 Relations:
P -
g B=2"_ ¢, ; e, =e,Xe,

dFi=1-dsxB; ds=ds-e,
B 1—2 . Calculation

1o
N R en

F 1—>v2\“‘/e/v B, =t
L 01 152 — 01
U 27TR
1 F,_,= J.IZ‘eTZ XB,_,,.dl,
1.1
epXe,=-¢, F_,= Bttty L,(-e,)

2 27R
IfrL=L, : F,_,=-F,
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: I’L
| F ‘: ka’ N

When the currents of the wires were different, the force was
measured to be:

1L

| F ‘: k.'h’ 2 N

s

In SI, the magnetic constant k,, is: m = )
T

This measurement is used to the define the electric current /
standard (1 ampere) in the SI system.

The force depends on the magnetic properties of the region
surrounding the wires, and is much stronger in the presence
of ferromagnetic materials: g = g 1,, H/m

1, =4rx107" H/m
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The force per unit length on either conductor is:

Fi :i:&ﬂ’ NJ:"H]
L 27 R
This is a typical 2-D field behaviour F = L APy,
(compare with the 2-D Coulomb’s law). 27ne, R

From Experiment 2, three important conclusions follow.

*Steadyv currents are sources of magnetic field (the same field
that is produced by permanent magnets).

*If the current-carrying wires are long enough, the magnetic
force has the typical for any other field 2-D behaviour (~ 1/ R).

*The magnetic field of a long wire with current can now be
derived.

Magnetostatics fields

In Experiment 1, it was shown that a current element of
length £ in a permanent magnetic field B of a magnet
experiences a force: o

F=ILxB, N
where B points from the south pole to the north pole of the
magnet. The force exerted on wire 1 by the current flowing in
wire 2 was shown to be in Experiment 2:

_ M LLL
2t R
On order both experiments to be consistent, the following
must be true for B :

5

)

s it is orthogonal to the wire element; and

i ; Magnetic flux
2 |:i[_25 T= N Hx;% “— | density
S 2T R Axm  m° —

11



Magnetostatics fields

Biot-Savart (Laplace) formula

Biot-Savart (Laplace) formula is the fundamental method in magnetostatics,
analogous to Coulomb’s formula in electrostatics.

It was founded from measurements of the torque on a magnetic needle (1820).
It gives means to calculate the magnetic field at any point of space from a
known distribution of currents.

We need to add up the bits of magnetic field dB arising from each infinite-
simal length ds.

Supposed that the structure consists in:
i is the current in the wire (element) [Amps (A)]

ds is the length of the current element measured in the direction of current
_. flow (m)
' is the distance from the element to the point of interest (m)

Magnetostatics fields

dB dB My i-ds-sinf
..... 4.7 r
JFe 4, .i-(ds><r)
§ 4.7 r
.............. Ezjdgzﬂo_l¢dsz<r
4.7 r
C C

1, =4x107 E is called the permeability of the free space.
m

12
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Magnetic field computation using Biot-Savart-Laplace formula

Algorithm of computation:
* Analysis and symmetry
e Approach to solution
» consider the infinitesimal current element ds

» consider the vector r measured from the infinitesimal current
element to the computation point

» the magnetic field dB arising from each infinitesimal length ds
is considered.

e (Calculations

Magnetostatics fields
Example 1

Consider a long straight wire carrying a current i. We want to find the
magnetic field B at a point P, a distance R from the wire.

Hoi dsxr

Biot & Savart: dB = ¢
4r r

Myl erXe,

A r? &

Approach: Current line elements ds

Calculation:_ ey xe, =ey;
tangential component only: dB

ﬂ_oisinﬁ

dB = >
4z r

dz

13
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- dz
Ar R+7 R +7 4z J R +7 R 472

—oc0

B_ﬂoij Rt [ z jw oy
iz ), . 2 T arr | izl To2m

The final result is:

Br=—tol o,
2-7-R

Example 2

Consider a circular circuit with radius a, carrying a current i. We want to find
the magnetic field B at a point P, a distance R from the wire.

Magnetostatics fields

: = ‘iepXe
Biot & Savart: dB= MT—zrds
4.7 r
Question: Determine B in P
Approach: Current line elements ds

Calculation: . epxe.=1;
symmetry: y- component only:

a’By =dB-cosa = Mizdscosa

Jse d 4-r
s= ds. ey .
dB B :¢dB :'uo'l. 1 .Zﬁa.—a
Y Y 4 d+R Ja* +R?
c
T
T e - luo.i.az - : \//\//
IS 70 T Ja
R p o dB, o+ ) C

14
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Example 3. Magnetic field of a circular solenoid
Radius: a ; Current i
Length: L

p y Coils: N, or per meter: n

Question: Determine B in P
Approach: Solenoid = set of circular circuits ;

and for each circuit: __ U, i a’ R is distance from
0

BP 'éy i .tt

,u0~ni-dy~R2 -
2 (R rar )

L
Each circuit: strip dy, current di = n.dy.i B = I
0

g R=y,y
a Result for L — oo

0O b R P Y B = Mo i e,
Vp Result independent of a, L
Magnetostatics fields

Current loop Coil or solenoid

15
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Ampere’s law

netostatics fields

electrostatic field diverg
VxE:OcM_:fEdf:O
C

The above equations are
regardless of its sources.

magnetic field.

When we studied the electrostatic field, Coulomb’s law was
the first step only, which gave the relation between the
field’s vector and its sources. Later on, we derived the

integral terms, its circulation and net flux:

Ampere’s law defines the circulation (and the curl) of the

ence and curl, or in equivalent
V.-D=p @ﬁﬁ-dizg
%

true for any electrostatic field

Magnetostatics fields

It was already shown that th
wire with current is:

e magnetic flux density created by a straight

—

— :uo'i

Ml
2-w-R ?

If we now integrate around a path of radius R enclosing the wire, we will

obtain the circulation of B:

A

| Tty

Cj}g.dgz &;Q.dgz
27 R
C
= &ggp-ds-;(p: ’uol¢ds:
27T R 27T R
C C
Myl :
= 2 xR =p, i
27Z'R ﬂ()

16
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B-ds = v We are now introducing a vector, which will
g be independent of the medium, and will be

€ entirely defined by the sources:

The magnetic field intensity or simply the magnetic field vector is:

T Cﬁﬁ-dgzi
ILIO 1m C

The above is Ampere’s law, which is valid not only for straight
wires but for any current distribution and any contour of
integration. The general form of Ampére’s law can be derived
from Biot-Savart law in a robust way. The two laws imply
each other, as in electrostatics, Coulomb’s law and Gauss” law
are closely related.

The current in the right-hand side of Ampére’s law is the total
net current flowing through any open surface bounded by the
contour C.

Magnetostatics fields

A.
l
Determine the “circulation of H -
¢ s H field” along an arbitrary circuit ¢
r
cﬁﬁ.d;:qﬁ.d;:i
C, C,
Consequences:

1. More currents through C, add up;

2. Currents outside C, do not contribute;

3. Position of current inside C, is not
important.

17
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Ampere’s law can be derived in its differential form as follows:

(ﬁH ds-z:>CﬁH ds-J.J.J dA
J.J.rotH dA = J.J.J-dZ: rotH = J

It is now clear that the electric currents are the curl-sources of the
magnetic filed.

Notice that the magnetic field has a non-zero curl, and this non-zero
curl equals the electric current density, unlike the electrostatic field,
which is a curl-free field.

— —

otH =J rotE =0
Magnetostatics fields
Irrotational Field Rotational Field

Electric field

rotE = 0

18



Electromagnetic Field

Note: until now we have considered that the surface S is immobile.

In the most general case of media in movement (surface has a relative speed

towards the media), the Ampere's law in differential form must be completed as:

—

D . R
rotH:J+a—+pv-v+rot(D><v) , Alm’®
t

Conduction current density | l

. . Convection currpnt density
Displacement current density

Roentgen current density

From the physical point of view, the correction current appears due to the
displacement, with the speed v (towards the surface S), of bodies charged with
charges (having the volume density of the charge A, ) and the Roentgen current
appears due to the displacement with the speed v of polarized bodies (having the
volumetric density of the polarized charge ).

Electromagnetic Field

— —~ 9D - — -
rotH =J +—+p, -v+r0t(D><v)
ot

y

ﬁ~d§:“‘{7+a—D+pv -;+rot(l—)><;)}dz
ot
N

.

q.)H~ds=i+iD+iC+iR

C(S)

c(s)

Ampere's integral form

In the most general case, a magnetic field can be produced by:
* conduction currents

e displacement currents

* convection currents

° Roentgen currents

19
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Symmetries for Ampere’s Law

(

A
8ees

~
Wire, Solenoid, Plane, Toroide,
oo long oo long oo extending along core line
Magnetostatics fields
Example 1
Ampere law used for the computation of H-field from a thick wire
Cylinder: radius a ﬁ ] d; T Ijj ] dZ
current : i = J‘J‘jﬂ c S
s Options for current:
I: at surface

II: in volume (suppose: homogeneous)

Use Ampere-circuits (radius r):

H(r)-2zr=i H(r)=——
2r

zr’ i-r
1):H(r)-2wr=i _ b
UD):H(r)-22r =i——3 H(,«)_ZM2

20



Magnetic properties of materials

Magnetostatics fields

BT

a
b
Minor loop

( lum-iron-boron
/7 "
7 of |1 "
/
s e,
L) ol
| d 7000 —900 —800 —700

Magnetic Hysteresis
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Somariu

Ceramic 7

L L L L L L
—600 —500 —400 -300 -200 —-100 O
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Demagnetization curves of permanent magnets
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—05 16

—0.4- T355C|
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T
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l -12
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\
s

2
I3
2

Hysteresis loops of soft Ferrites & recording media
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Laws of magnetostatics

The magnetic flux law

Definition:
The total magnetic flux through a closed surface is always zero.
Cﬁf B-dA=0 Integral form of the law
X,
ﬂ B-dA = C-[:‘H‘ divB -dv =0
b Vs
VB =l Differential form of the law
div,B=np - (E; —E) =B, —B,=0 Boundary conditions

21
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Laws of electrostatics

ﬁ D-dA=
9z Integral form of the law
D

C.f_‘:'; 5-d2=<ﬁﬂ divD -dv =q,

b3 Vy
divD = P, Differential form of the law
divsD = nn (1‘); _Z)T) =D, -D, =p, Boundary conditions

Magnetostatics fields

Laws of magnetostatics

The magnetization law

From experimental studies, it is found that the magnetization vector (the
temporary component) is strongly related to the magnetic field strength. For most
common magnetic materials, these two vectors are collinear and proportional for
a wide range of values of H (linear materials and isotropic).

]\_/ft ==a ‘H Valid just for linear materials

where: ¥ is the magnetic susceptibility of the material.

When the magnetic susceptibility depends on the magnetic field strength H, it is said
that the medium is nonlinear, because all the field relations become nonlinear
equations. When the magnetic susceptibility depends on the position in the volume of
the magnetic body, it is said that the problem is inhomogeneous, as opposed to the
homogeneous case when the properties of the material are constant throughout the
volume. Moreover, the magnetic properties may depend on the direction of the
applied field. This is called anisotropy of the magnetic material.

22
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Relative permeability [ and susceptibility ¥,

Bismuth 0.99983———— -1.66E-4) T
Mercury 0.999968 -3.2E-5 5
Gold 0.999964 3.6E-5 5
Silver 0.99998 2.60E-5 > E
Lead 0.999983 -1.7E-5 2.
Copper 0.999991 -0.98 E-5
Water 0.999991 -0.88 E-5
B Vacuum 1.000 — 0 éu
Air 100000036 — 3.6 E7| 2
I Aluminium 1.000021 2.5E-5 q§
Palladium 1.00082 8.2E4 8 :
(@)
Cobalt 250
Nickel 600 --- ~Ferromagnetic
Iron 6000 .

Magnetostatics fields

Laws of electrostatics

The polarization law

From experimental studies, it is found that the polarization vector (the
temporary component) is strongly related to the electric vector field. For
most common dielectrics, these two vectors are collinear and proportional
for a wide range of values of E (linear materials).

E =7, &, .E| Valid just for linear materials

where: Xe is the electric susceptibility of the material.

23
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Laws of magnetostatics
The relation between B, H and M vectors

The vector sum, between the magnetization vectors (both components) and the
magnetic field strength, multiplied with the permeability of the vacuum, is
equal, at any moment and point, with the magnetic flux density:

B=p,-(H+M,+M,)

§=ﬂ0-(ﬁ+1ﬁ)

B=u, (H+M,)=p,-(H+yg, H)=p,-(1+2,) H=u-H

For materials with anisotropy and without permanent magnetization:

H

=

B=

Magnetostatics fields

Laws of magnetostatics

The relation between B, H and M vectors

Then, the relation between the magnetic flux vector and the magnetic field
strength is a tensor one:

— : Bx luxx luxy luxz Hx
H By 5 ﬂyx ﬂyy ﬂyz Hy
Bz luzx fuzy fuzz Hz

Fortunately, it is often suffices to assume that the medium is homogeneous, linear
and isotropic. This is the simplest possible case.

B=

=

Final note on the physical meaning of the relative magnetic permeability: it shows
how many times the magnetic field strength is decreased or increased in the
volume of the magnetic material due to the effect of the magnetization.

In general the magnetization vector consists in 2 components:

Note: - a temporary component (M,) and a permanent one (M,)

24
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Laws of electrostatics

The vector sum between polarizations (both components) and the
electrical field intensity, multiplied with the permitivity of the vacuum,
is equal, at any moment and point, with the electrical flux density:

D¢, E+B+P,

D=¢, E+

Jol

" D=¢E

For materials with anisotropy and without permanent polarization:

'E

ol

D=

Magnetostatics fields

Laplace and Poisson equations in electrostatic

Free space — Laplace equation

P, =0

div(—gradV') = Py
£

R Ay =2
£

Materials — Poisson equation

\ P, #0

VzLJ‘&dv
dre ) r
\%

25
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Poisson’s equation in magnetostatics

— — ~ | ~
divB =0 B =rotA H =—=—rotA
7R
A = magnetic vector potential
Ampere’s law in differential 4. l‘ﬁ : 7 rot L -rot Z = 7
form Y7,
If the medium is linear, homogeneous and isotropic: l

rot(rotZ)z i

rot(rotZ) = grad (din)— AA = u-J

Imposing the Coulomb condition: div Z =0

Magnetostatics fields

Poisson’s equation

—

grad(din)—AZ:,u-j VA=AA=-u-J

= Vector Poisson’s Equation
divA =0

Scalar Laplacian

— —

2= 2 = 2 7 2
V A=V'A i+V Ay-]+V Az-k

J=J, - i+J, - j+J_ -k
VA, =-p-J, . 3

2 e .
v Ay = A4 ‘]y 3 scalar Poisson’s equations

26
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. , .
Poisson’s equation V2A =
Analogy with the Poisson’s

equation for electrostatic field

2
VA =-u-J,
V?A =-u-J,

viy = - £
e i B
With the already known solution: <
H J,
1 P A =—— dv
V = _V.dv 47[ o r
4.7 -¢€ i Ve
Vy .
A=t |22
Y4 ) or
V):
A = A S dv
4.7 ) r
Ve

Magnetostatics fields

Poisson’s equation

r - r 4.7 r
V): V): VE
A= U J d Vector magnetic potential solution for Poisson’s
- 4.7 7 av equation for volume current distribution
Vg -
1 .
J = —| where S is the transversal area
If we consider a thin wire then: S of the wire and i the total

l current

qo M J‘L‘dv_ y2i J‘L.§-d§_,u-i ds
4.1 S 4-71) S
Vy

r S r 4. r
Vs c

27
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Poisson’s equation

Vector magnetic potential solution for Poisson’s equation valid only
for thin wires:

Supposed that the structure consists in:
i is the current in the wire (element) [Amps (A)]

ds is the length of the current element measured in the direction of current
_. flow (m)
I is the distance from the element to the point of interest (m)

FoMifds
4. r

C

Magnetostatics fields

Poisson’s equation

K:ﬂ'i dg

4.7 r
C

L 1Y

dA

If the vector magnetic potential is known
then the Biot-Savart’s formula can be

deduced:
S
B=rotA=rot &Cj‘)ﬁ =
.............. 47'[ r
c
4.7 r 4.7 r
c c

28
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Note:

7 ‘P:J.J.E-dZ:‘“.rotZ-dZ:CJ.)Z-dE
Sc

Sc C

In magnetostatics fields a flux is much easier to be computed (in comparison with
electrostatics fields) !!! Instead of a surface integral it is enough to compute a line
integral.

Considering the magnetic vector potential for thin wires, the ;\: = uq‘) &

magnetic flux computed in a closed path C, is: 4.7 g, r
lP:CJ‘);‘:'dS—‘:(ﬁ ﬂ"(ﬁ& ds, =
4.7 r
Cl 1 C2
_ BT C_f) CJS ds,-ds,
4.7 r
c, C,
Magnetostatics fields
Note:
7 ‘P:J.J.E-dZ:‘“.rotZ-dZ:CJ.)Z-dE
Sc Sc c

In magnetostatics fields a flux is much easier to be computed (in comparison with
electrostatics fields) !!! Instead of a surface integral it is enough to compute a line

integral.

Considering the magnetic vector potential for thin wires, the ;\: = uq‘) &
magnetic flux computed in a closed path C, is: 4.7 r

C,

w=<J3;g.d;1=qS ﬂ'lq‘)& 5 =
J 4.7 r

1 C2

_ ﬂ'i(ﬁcj‘)di-di
4.7 r
C, C,

1

29
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Analogy

Electrostatics Magnetostatics
Scalar Potential - V Vector Potential - A
E-field H-field
Permitivity € Permeability &4

Volume Charge Density P, Current Density 7
Surface Charge Density P Surface Current Density 73
Capacitance - C Inductance - L
Laplace’s Equation Laplace’s Equation
Poisson’s Equation Poisson’s Equation

Magnetostatics fields

Flux linkage

In inductors, it is very important not
only to achieve large magnetic flux but
it is also important to make this flux

R
.

-
flow through as many coils as possible. -y

- e
The sum of all fluxes piercing the i <3 )
surfaces bounded by the turns of a coil I :
is called flux linkage. < el

/ e ‘,VV

In most inductors, the fluxes flowing i

through the coils are the same and the
flux linkage is simply: ~ A=NY¥, Wb

Thus, if the magnetic flux density is uniform inside the inductor
(the coil), then the flux linkage is: A=NBS, Wb

30
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Flux linkage

The flux linkage may be self flux linkage and mutual flux linkage. A single coil
has only its own self flux linkage, i.e. this is the flux created by its own current,
which flows through its own turns.

The mutual flux linkage is defined B.
only if a pair of magnetically i iy \
coupled coils exists. : £\/<,.. . ‘ o I,
The mutual flux linkage of coil 1 is //: ‘ g 2
due to the magnetic field of the coil ) \<':- <) : < :
2, which induced emf in coil 1. o (F
) k — . a ) N
Ay =NWy ~ N3T, M —
Ay = NoW,, ~ NoN
:\: = All + ;’\:]

Magnetostatics fields
Self inductance and mutual inductance

[t was already shown that the magnetic flux (and therefore the
flux linkage) in solenoids and toroids is proportional to the
current. The coefTicient of proportionality between the flux
linkage and the current is called induciance L:

A=LI, Wb=Vxs |z :A’ H:ﬂ: Vixs O
I A A
Thus, in circuit theory:  — Lﬁ, AV
dt
The self inductance corresponds to the self flux linkage:
Ly, :hs H
Il

The mutual inductance is defined through the mutual flux
linkage:
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Self inductance and mutual inductance

It can be shown that the flux of any steady current is proportional
to its current, and, therefore its inductance is always a constant as
long as the magnetic permeability is a constant.

Consider a loop of current along a contour C|. The flux through

the open surface S, bounded by C, is —
v, = J‘J.Bl'dAl , Wb
S

From Biot-Savart’s law, the magnetic flux density produced by

this current contour at any point of space is: |__ w1, f ds xr
B =— — T
4- r
G
-1 ds, Xr —
lI’11=J-J. £ 1¢ - dA, Wb Y, ~u-lI
4. r
Sl Cl

Magnetostatics fields

Self inductance and mutual inductance

As long as the magnetic permeability # does not depend on the
current, the inductance is also a constant, which does not depend
on the current /.

In ferromagnetic materials however the magnetic permeability

depends on the strength of the field| H |. Therefore, it depends on

the current, too. Thus, the inductance of coils with ferromagnetic

cores is a non-linear function of the current.
W~uHhI=>Y=L(I)I, Wb

In general, the self inductance of any contour C with current can

be expressed via the MSF vectors as:

[[B-dA [[H-dA,
_Y¥_ s = .5

I §H-ds $H-ds
C C
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[[H-da [[E-d4
= .S[;jﬁf, 120 I e wa
-ds IEds
C 1

Just as it was shown that for capacitors:

It can be shown that:

Note: [, =~ represents only the external inductance, related to the external flux
of an inductor.

Qla
SHE

In an inductor such as a coaxial or parallel-wire transmission line, the
inductance produced by the flux internal to the conductor is called the internal
inductance [, - while that produced by the flux external to it is called external
inductance. The total inductance L is:

L=L, +L,

nt

Magnetostatics fields

Typical examples of inductors are toroids, solenoids, coaxial transmission
lines, and parallel-wire transmission lines. The inductance of each of these
inductors can be determined by following a procedure similar to that taken
in determining the capacitance of a capacitor.

For a given inductor, we find the self-inductance L by taking the following
steps:

1. Choose a suitable coordinate system.

3. Determine B from Biot-Savart’s law (or from Ampere’s law if symmetry
. @ L
exists) and calculate ¥ from N ,U B-dA
N

. . A N-V¥
4. Finally find L from L= 7 =

1

The mutual inductance between two circuits may be calculated by taking a
similar procedure OR applying Neumann’s formula.
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Magnetostatics fields

Example no. 2

1
I @
1w Find the mutual inductance between a long, straight wire

® (circuit 1) and a rectangular loop (a by b) placed at a distance
A, w (circuit 2).
r H -ds=1=27x-r-H,=1
@
c
1
B, =y —t, T
a Lo ﬂ 2 D/ o
1 I dA,

2-7-r r

= [[Bd A= [[By [ da S ]

7 :lu.i“%:ﬂ LTM:MM.MW”

2.7, EX; W 2.
Y, b , wta
b I, # 2-% " w
Electromagnetic field
Introduction

So far we have:

—_—

divE="" rotE=0  givB=0 rotH =7

E
- O _/
Y Y
Electrostatic field Magnetostatic field

These equations are OK for static fields, i.e. those fields independent of
time. When fields vary as a function of time the curl equations acquire
an additional term.

= 9B — )
rotE =0 getsa—g rotH =J €52  of
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Electromagnetic field

Faraday’s Experiments

i

Michael Faraday discovered induction in 1831.
Moving the magnet induces a current i.
Reversing the direction reverses the current.
Moving the loop induces a current.

The induced current is set up by an induced EMF.

Electromagnetic field

Faraday’s Experiments

(left)

* Changing the current in the right-hand coil induces

a current in the left-hand coil.

e The induced current does not depend on the size of

the current in the right-hand coil.

e The induced current depends on di/dt.
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Electromagnetic field

Faraday’s Experiments

1) 2) (left)

EMF

7 v=0

i «—

* Moving the magnet changes the flux ¥ (1) — motional EMF.
e Changing the current changes the flux W (2) - transformer EMF.
Faraday: changing the flux induces an EMF (e).

__d¥ Faraday’s law
dt

The emf induced J \ equals the rate of change

around a loop of the flux through that loop

Electromagnetic field

Faraday formulated the law named after his name ‘

The induced electromagnetic force (EMF) - e_  or simply (e), in any
closed conducting loop (circuit) is equal to the time rate of change of the

magnetic flux linkage of the loop.

N
di

d — .
_E J.J. B-dA Integral form of Faraday’s law
SF

The negative sign shows that the induced emf (and currents) would act in
such a way that they would oppose the change of the flux creating it.
This law is also known as Lentz’ law of EMF induction.

If the circuit consists of N loops all of the same area and if W is the flux
through one loop, then the total induced emf is:

o= _ N
d di
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Electromagnetic field

Lenz’s Law: The direction of any magnetic induction effect (induced
current) is such as to oppose the cause producing it. (Opposing change =
inertia!)

B A

. . B A
(increasing) (decreasing)
£ Q r €
A A
B B
(increasing) (decreasing)

Electromagnetic field

Differential form of Faraday’s law

o
di

e:(JSE.d; xpzﬂg.dz
r Sp

Note: SF is an open surface. 1
GE-d5=-<| [[5-aa
dt
r Sr
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GE-d5=-<| [[5-dd
dt
r Sr
Applying Stokes’s theorem:

C'[)Ed}: Hmtﬁ.dz‘ =_di HE-dZ
r Sr ’ Sp

Suppose that the surface S is mobile with the velocity v, then the derivative
with respect the time of the surface integral will be:

i J‘JAEdK = J. —.dA +J]rot B><v
dt
B

%/—/ %/—/
The surface is immobile  The surface is mobile with
velocity v

Electromagnetic field

GE-ai=-2| [[B-a7| CH[[B-aa|<| [[5F-aa |+ [[ror(Exi)-ad
dt dt ot
r Sr Sp Sr Sr
Hsz-dZ =— ”a—B-dK —Hmz(ﬁx;)-dA
ot !

Sr Sr

ays

—~ 9B - = e
rotE = —§+ rot(vXB) Differential form of Faraday’s law
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The induced electromagnetic force (emf) around a circuit can be separated
into two terms:

* Transformer emf component, due to the time-rate of change of the B-
field :

= — - - — OB —
rotE' :—aa_B - Cransformer :¢E'ds :J.J. rotE-dA :_J. gdA
I

t sl' SF

* Motional emf component, due to the motion of the circuit:

E=vXB emotianalzcvbi‘dg=<vb(;X§)-dg
r r

Note: the induced electric field is non-conservative !!!! |rotE #0

The electric field is conservative only in electrostatics regime !!!!

—_

ot E =

Electromagnetic field

Electric field in terms of potential functions (electrostatics):

rotE=0 = E-= —gradV

Electric field in terms of potential functions (electrodynamics): B = rotA

P — = I VR
rotE:—aa—t+r0t(v><B) ‘ rotE:—rotaa—?+r0t(v><B) ‘ mt[E-'-E_VXBJ_O

—

E= _8_A+ VX B— gradv| The most general form:
20 | \

/ l ~

Vector magnetic potential Scalar electric potential

\Motional component

In electrodynamics both components are functions of time
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Particular cases: =
1) The surface is immobile (v = 0): ‘ E=—%—?—g"adv

The motional emf is zero: o - (f)id; _ 4)(;><§)~d§ -0
The transformer emf is non-zero: e = J' Ly CﬁE'dEZ—Cﬁaa—'dS
r

Differential form of Faraday’s law: — 0B

t
2) The surface is mobile but the magnetic field B is constant in time: ‘

The motional emf is non-zero: — . -
emoti{mal = @Eds = @(VXB)dS

Electromagnetic field

rotkE =———
d

f?:;xﬁ—gradV

Differential form of Faraday’s law: |rofE = rot(;xﬁ)

Electromagnetic field

The transformer emf is zero: € ransormer = J- “Z.dA=0

Applications. Example no.1

A long, straight wire carries a current I (constant). A rectangular

B loop (a by b) lies at a distance w (at time t = 0), as shown in the
I w @ figure and it is moved with a constant speed v. What is the emf

ol b induced in the loop in this case?

dA

- N ‘{’:—di J‘J‘B~dA :—di J‘J‘B-dA
dr v 4 SF ! Sr
Because: B and dA are collinear (see the figure)
a T for along wire: B = Hil and dA=b-dr
2--r
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Electromagnetic field

+vita +vi+a

lp:J‘J‘B.dA=J‘ ML A J‘ LRI I dr
2--r 2-r 2- r
N wtvt wvt

Sp

,u~I~b.1nw+vt+a

2. w+vt
=_2q/_ 3(,ulb nw+vt+a)=
d¥ ' ot o\ 2.7 w+vt
- ? _,u-I-b( v 0 v )_/I~I~b~v~a. 1
2.7 \w+vt w+vt+a 2-r (wHvt+a)-(w+vt)

In this case there is only a motional emf component!!!!

An other way of computation of the motional emf component

€ notional :¢E'd§=€ﬁ(;xg)~d320
I r

Electromagnetic field

w| . o n -
&5 6yt =P E-d5 = p(iB)- 5 j (vxB)-ds+
I]o P
r r M
©® P Q M
oy Lo
1 B | . |+ (va)-ds+ va -ds+ v><B
T K 1 ?
ds v 0
M N 5 p
but vaB d vaB ds=0 and
a r
M P
N N N I
I(;Xﬁ)wﬁ=—Iv~B~ds=—v-B-Id s=—v-B-b=— ﬂ+~b
2. (wt+vt+a)
P P P

v><B -ds J‘v B-ds=v-B- Ids—v B-b=v- ’U—I
2-71’-(w+vt)

!0'—.3
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. u-l y7y |
. = XB .d =—y: 'b+ ° '
€ notional é(v ) $ v 2’7['(W+Vt+a) v 2.7‘[.(W+Vt)
I
. _v~,U-I~b( I J_Vﬂ-l-b'a. !
motionat 2.7 \wtvt wtvt+a 2.7 (wHvt)(wHvi+a)

Example no.2
Solved the same problem using two different methods considering that the

current is not any more constant:

i=i(r)=IV2sin (@t +a)

Electromagnetic field

Example nr. 3
Rotating Loop - The Electricity Generator

Consider a loop of area A in a region of space in which there is a uniform
magnetic field B. Rotate the loop with an angular frequency ® .
The flux changes because angle 6 changes with time: 6 = ot.
Hence:

‘{’=J'J.E-dz=IIB~dA~cosl9=B~cost9~A
St S

@ cos@ = cos(w-1+8,)
Vil

¥ =B-A-cos(w1+6,)

C\

e=—%=B-A-a)-sin(w~t+6’0)

This is an AC (alternating current) generator

42



Electromagnetic field

Example nr. 4. Transformer

— A transformer is a device used to increase or decrease an AC
voltage. It consists of wire, known as the primary and secondary
coils.

— The primary is connected to a source of emf and the secondary to a
device usually referred to as the load.

+ / _Eemf_!,) —
1
current increasing current induced in | /4
in shown dl\k‘\.‘llﬂﬂi /shown direction L
—— v - |
induced flux
flux increasing in opposes the rise of
showndirection - the total flux
N, = the number of secondary turns 7 A _ ¥
7 = b——

Np = the number of primary turns

Electromagnetic field

For an ideal transformer:

s

N3
NP

— V,and V, are the voltages in the secondary and primary and N
and N, are the number of turns in each coil.

— Based on the law of conservation of energy, the power output in
the secondary would be equal to the power input in the primary:

The induced emf’s react to the total flux change (the self flux
change and the mutual flux change), as seen from the equation
above. As soon as the total flux levels at zero derivative, the
emf’s drop to zero. If the total flux starts a decrease, the induced
em{’s will produce currents whose fluxes will counteract the
decrease, i.e. their own fluxes will add up to the dropping total
flux
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Maxwell’s equations (v = ()

Integral form Differential form Significance
. o _ OB Faraday’s law
E-ds=-—- rotk=—=- Maxwell 1
— Ampere’s law
. D — - 3D
H'dS:l+J. —dA rotH = J +— Maxwell 2
ot ot
s
= divD = 0, Electric flux’s law
C_‘.—-ﬁ D-dA=0Q Maxwell 3
by




