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The Theory of 

Electromagnetic Field

About the Course

• Aims

– To provide students with an introduction to electromagnetism

• Objectives

– To introduce the principles and applications of electromagnetism

– To understand and apply the laws governing electric and 
magnetic behaviour

– To be aware of some of the applications of electromagnetic 
behaviour
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INTRODUCTION

Statics and Dynamics in Electromagnetism

Stationary charges → electrostatic fields

(charges have zero velocity and zero acceleration)

Steady currents → magnetostatic fields

(charges have non- zero velocity and zero acceleration)

Time-varying currents → electromagnetic field

(charges have non-zero velocity and non-zero acceleration)
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0
D Eε= ⋅
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Electrostatics

Chapter 1

Electric Field in Vacuum

• Basic Definitions

• Electric Charges

• Coulomb’s Law and Definition of Electric Force 

and Intensity

• The Electric Field for discrete distributions

• The Electric Field for Continuous distributions

• Gauss Law

Electrostatics
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Electrostatics

Electrostatics is the branch of electromagnetism dealing with the 

effects of electric charges at rest.

The fundamental law of electrostatics is Coulomb’s law which is 

based on physical observation and cannot be deduced logically or

mathematically from any other physical law. 

Electrical phenomena caused by friction are part of our everyday

lives, and can be understood in terms of electric charge.

The effects of electric charge can be observed in attraction/repulsion 

of various objects when “charged”.

The concept of a field is used to describe “action at a distance” – a 

disturbance or input at one point can have an effect or output at a 

distance point. The region where the effect of this coupling media is 

felt is the field, described by its (vector) field strength.

Electrostatics

Electric Charges

The electric charge is a fundamental property of matter. It is 

measured in Coulombs (C). It was agreed that the electric current 

unit Ampere (A) would be chosen as a basic unit in SI. Thus, 

Coulomb is a secondary unit derived as:

sAC
dt

dQ
i 111 ×=⇒−=

i is the electric current in Amperes (A)

Q is the electric charge in Coulombs (C)

t is time
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• Evidence for electric charges is everywhere, e.g.

– static electricity

– lightning

• Objects may become charged by contact and frictional forces.

• Benjamin Franklin (1700’s) discovered that there are two types of 
charges:

– positive charge

– negative charge

• Franklin also discovered that like charges repel and unlike 
charges attract one another.

• Electric charge is:

– quantized (Millikan)

– conserved (Franklin)

Electrostatics

Electric Charges

Classes of Materials

• Conductors are materials in which charges may move freely (e.g. 

copper).

• Insulators are materials in which charges cannot move freely 

(e.g. glass).

• Semiconductors are materials in which charges may move under 

some conditions (e.g. silicon).

Charges and the Earth

• The earth acts as a near-infinite source or sink of charges, and 
therefore its net charge cannot easily be changed.

• Any conductor in contact with the earth is said to be grounded 
and cannot receive a net charge. (principle of lightning rod)

Electrostatics

Electric Charges
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Induced Charge

• Charged objects brought close to a conductor may cause charge to

redistribute (polarize the conductor).

• If a polarized conductor is momentarily grounded, charge will be

transferred to/from the earth, and it may be left with a net charge 

(by Induction).

• Objects may be charged by

– conduction (requires contact with another charged object).

– induction (requires no contact with another charged object).

Electrostatics

Electric Charges

Electrostatics

Charge is associated with matter. Therefore, it has finite volume. 

However, volume charges Q can be always considered made of 

even smaller volumes. This is particularly useful when the volume 

of charges has inhomogeneous charge distribution.

Continuous Distributions of Charges

Charges can occurs as:

• Point charges (C)

• Volume charges (C/m3)

• Surface charges (C/m2)

• Line charges (C/m)

most general⇐
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Electrostatics

Point charges

Are charges whose volume can be considered infinitesimally 

small (a point) in comparison with the distance from its center at 

which its field is analyzed.

Q4

Q1

Q2

Q3

Qn

Q5
R

A

Electrostatics

Surface charge density definition [C/m2]

X

Y

dA=dx dy

dQ=ρs(x,y) dx dy

0
s

q

Q dQ
lim

A dA
ρ

∆ →

∆
= =

∆

S

s

S

Q dAρ= ⋅∫

Surface charges
Are useful when the physical 3-D charges 

are spared in wide thin sheets whose 

thickness is negligible in comparison with 

their length and width. Beside, it can be 

assumed that their charge distribution 

variations with the height are negligible.
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Electrostatics

Electrostatics

Line charges Are useful approximation for charges whose 

volume has two of its dimensions negligibly 

small with respect to the other dimensions 

(the length). The variations of the charge 

distribution in the cross-section are negligibly.

Line charge density definition [C/m]

0
l

q

Q dQ
lim

l dl
ρ

∆ →

∆
= =

∆

l

C

Q dsρ= ⋅∫

dz

z

O

dQ

C

dl=dz
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Electrostatics

Volume charges

Volume charge density definition [C/m3]

0
v

q

Q dQ
lim

v dv
ρ

∆ →

∆
= =

∆

v

V

Q dvρ= ⋅∫

V

Z

Y

X
V

dQ

dV=dx dy dz

Electrostatics
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Electrostatics

Electrostatics
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Electrostatics

Electrostatics

The electric field (intensity) vector E
��

The electric field vector is the force exerted on a unit force.

0q

F d F
E lim ,N / C V / m

q q∆ →

∆
= = =

∆ ∆

�� ��
��

F q E, N⇔ = ∆ ⋅
�� ��

Here,          is a test (probe) charge, which means that it is small 

enough not to disturb the measured original field of the source 

charge Q.

q∆
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Electrostatics

The electric field (intensity) vector E
��

The electric field vector is the force exerted on a unit force.

0q

F d F
E lim ,N / C V / m

q q∆ →

∆
= = =

∆ ∆

�� ��
��

F q E, N⇔ = ∆ ⋅
�� ��

Here,          is a test (probe) charge, which means that it is small 

enough not to disturb the measured original field of the source 

charge Q.

q∆

2 3

0 0

1

4 4

Q Q r
E u

r rπε πε
= =

�
�� �

Thus electric field from a single charge is:

0q

F
E lim

q∆ →

∆
=

∆

��
��q∆

r
�

Q

u
�

F∆
��

E
��

Electrostatics

Electric field intensity of a single point charge q
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General Properties of an Electric Field

• Electric field is generated by any charged object.

• It is a vector field and obeys the principle of superposition,

i.e., the field of a system of charged objects is equal to the 

(vector) sum of the field of each individual charged object in 

the system.

• The electrostatic force between charged objects is mediated 

by the electric field.

Electric field intensity

Electrostatics

Electrostatics

• A visualization tool to illustrate the geometry of an electric 

field.

• Electric field lines originate from positive charges and 

terminates at negative charges.

• The direction of the electric field at any location is tangential to 

the field line there.

• The magnitude of the electric field at any location is 

proportional to the density of the lines there.

Electric Field Lines

Electric field intensity
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Electrostatics

Electric field intensity

Examples:

Uniform electric field: an electric

field that has the same magnitude

and direction at every point.

Electrostatics

Electric field intensity

Examples:
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The force on a test charge is then given by

1

n

i
i

F F
=
∑∆ = ∆

� �

so the electric field is, by definition, given by

1

0 0 1

n

i n
i

i
q q i

F
F

E lim lim E
q q

=

∆ → ∆ → =

∑
∑

∆∆
= = =

∆ ∆

�
�

���

Principle of superposition!

Electric Field due to Multiple Point Charges

Electrostatics

Electric Field due to Multiple Point Charges

Electrostatics

Principle of superposition

This principle is of major importance to the solution of field 

problems in linear media, i.e. media whose electromagnetic 

(EM) properties do not depend on the field’s intensity. In the 

case of electrostatic fields (ESF), the EM property that matters

is the dielectric permittivity. If it does not depend on E, then

the medium is linear.

The ESF of multiple charges at any point is a vectorial sum 

of the fields created by each individual charge:

1

n

i

i

E E
=
∑=
���
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1r

Q1

Q2

2r

1E

2E

Electric Field due to Multiple Point Charges

Principle of superposition (cont)

Electrostatics

E

Electric field due to continuous charges distributions

Electrostatics

When the field is due to charges, which are distributed throughout a 

volume with some known density      C/m3 , then this volume is 

represented by an infinite number of infinitesimal (differential) 

charges:

vρ

vdQ dv, Cρ= ⋅

Each differential charge is in effect a point charge. Thus, it generates 

a differential “part” of the field, which is:

2

0

1

4

dQ
d E u, V / m

rπε
=
�� �



20

Electric field due to continuous charges distributions

Electrostatics

The total field is obtained via the principle of superposition.

A summation over differential contributions has to be performed:

this is integration (volume integration)

2

0

1

4

v

V

r
E dv, V / m

r r

ρ

πε
= ⋅ ∫

�
��

When distributed surface charge is present, it is broken down into 

differential surface charges, each of which is described by its surface 

density       C/m2:
sρ

s
dQ dA, Cρ= ⋅

2

0

1

4

s

S

r
E dA, V / m

r r

ρ

πε
= ⋅ ∫

�
��

Electric field due to continuous charges distributions

Electrostatics

When distributed line charge is present, it is broken down into 

differential line charges, each of which is described by its line 

density       C/m:lρ

l
dQ ds, Cρ= ⋅

2

0

1

4

l

C

r
E ds, V / m

r r

ρ

πε
= ⋅∫

�
��

Thus, the field generated by linear charges is found by the 

following line integrals:
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Algorithm of computation:

• Analysis and symmetry

• Approach to solution

• Calculations

• Conclusions

Electric field computation using the superposition principle

Electric field due to continuous charges distributions

Electrostatics

Electric field due to continuous charges distributions

Electrostatics

Electric field of a thin disk

Available :

A thin circular disk with radius R

and charge density  ρ [C/m2]

Available :

A thin circular disk with radius R

and charge density  ρ [C/m2]

Question :

Calculate E-field in arbitrary 

points a both sides of the disk

Question :

Calculate E-field in arbitrary 

points a both sides of the disk

Example no.1
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Analysis and Symmetry

1. Charge distribution:

ρs [C/m2]

2. Coordinate axes:

Z-axis = symm. axis, 

perpend. to disk

Z
X

Y

3. Symmetry circle: cylinder

4. Cylinder coordinates:

r, z, ϕ, ϕ, ϕ, ϕ

er

r

ez

z

eϕϕϕϕ

ϕϕϕϕ

Electric field due to continuous charges distributions

Electrostatics

R 1. XYZ-axes

Z

Y

X

2. Point P on Y-axis

P

Ei

Qi

ri
3. all Qi’s at ri and ϕi

contribute Ei to E in P

4. Ei,xy , Ei,z

Ei,z

Ei,xy

5. expect: Σ Ei,xy = 0, 

to be checked !! 

6. E = Ez ez only !

Analysis, field build-up

Electric field due to continuous charges distributions

Electrostatics
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R

Z

1. Distributed charges

dQ

2. redE
2

04 r

dQ

πε
=

dE

er
r

P

3. Rings and segments

4. dQ = ρs.dA= ρs (da.)(a dϕ)

a

dϕϕϕϕ

ϕϕϕϕ

da

5. z- component only !

dExy

dEz 6. )(
4 2

0

zz
r

dQ
eedE r •=

πε

Approach to solution

Electric field due to continuous charges distributions

Electrostatics

R

Z

dQ

dE

er
r

P
a

dϕϕϕϕ

ϕϕϕϕ

da

dEz

αααα

zP

1. )(
4 2

0

zz
r

dQ
eedE r •=

πε

2.   dQ = ρs.dA= ρs (da.)(a dϕ)

22
cos

P

P

za

z

+
==• αzr ee3.

4.
( )

2

2 2 2 2
0 0 0

1

4

R

s P
z

P P

.da.a.d z
E

a z a z

π
ρ ϕ

πε
=

+ +
∫ ∫

Calculations (1)Calculations (1)

Electric field due to continuous charges distributions

Electrostatics



24

R

Z

dQ

dE

er
r

P
a

dϕϕϕϕ

ϕϕϕϕ

da

dEz

αααα

zP

2 2
0

5 1
2

s P
z

P

z
. E

z R

ρ

ε

 
= − 

+  

6.  If R −>  infinity :

02

s
z

E
ρ

ε
=

Calculations (2)Calculations (2)

Electric field due to continuous charges distributions

Electrostatics

4.
( )

2

2 2 2 2
0 0 0

1

4

R

s P
z

P P

.da.a.d z
E

a z a z

π
ρ ϕ

πε
=

+ +
∫ ∫

Z

P

EP

02

s
P

ρ

ε
= zE e

for infinite disk:for infinite disk:

field strength independent 

of distance to disk =>

homogeneous field

ConclusionsConclusions

Electric field due to continuous charges distributions

Electrostatics
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Analysis:

• ∞ long wire: ρl [C/m]

• cylindrical symmetry

y

z

y
x

PyP

Problem: EP in point P(0,yP,0)

2

04

l .dz
cos

r

ρ
α

πε

∞

−∞
∫ ∫= =yE dE

dEy

• Symmetry ⇒ y-component only !!

er . ey = cos α

r

y
zyr P

P =+= αcos;22

r, er and α are f (z) : 02

l

Py

ρ

πε
=

Conclusion: E radial symmetry

r

dz
er

dE

Approach: redE
2

04 r

dQ

πε
=

z

O

• Charge element: dQ = ρl dz 

α

Electrostatics

P

Thin plate , ρs [C/m2]

x

y

z

(1)

zP

dQ = ρs dA = ρs dx.dy

dE

r

er

dE = dEx ex + dEy ey+ dEz ez

if plate ∞ large : dE // ez

(2)

(2) if ρs = f (x) only: 

x

Use result for ∞ long wire:

z
dE

r
er

PzP

with d ρl = ρs. dx

02

l
z

P

d
dE

z

ρ

πε
= dE in XZ-plane

= dA = dx.dy , at (x,y)(1)

Electrostatics
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Electrostatics

Summary of field formulas for standard charge distributions

en

en

en

EA
AA

θ

1. Homogeneous vector field E

θ ≡ < (en , E) = 0 θ = 90o

Def.: Φ = c.A.E

Choice: c ≡ 1     
Φ = 0

Φ = E A cos θ

Φ = (E.en) A 

2. General vector field E For small surface elements dA:
A and en are constant

S S

E dA E AΦ= ⋅ = ⋅∫∫ ∫∫ne d
�� �� ��

Electric Flux  ΦΦΦΦ : definition
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en’

dA’

Flux ΦE’ through surface A’:

θ

A’

R
dA

en

A

Flux ΦE through sphere A:

Gauss’ Law (1): derivation

O Q

Charge Q in O

2

04
E

A A

Q
dA

rπε
Φ = ⋅ = ⋅∫∫ ∫∫ r nE dA e e� �

2

2

0 0

1 4
4

Q Q
. . R

R
π

πε ε
= =

2

0
4

E '

A' A'

Q
' ' dA '

r'πε
′Φ = ⋅ = ⋅∫∫ ∫∫ r nE dA e e� �

2 2

0 0 0
4 4

A' A'

Q cos .dA ' Q dA Q

r' R

θ

πε πε ε
= = =∫∫ ∫∫� �

Result is independent of the 

shape of the surface !!!
0

E

Q

ε
Φ =

Electrostatics

Result is independent of 

the shape of the surface

0

E

Q

ε
Φ =Flux:

Consequences:

• Q needs not to be in O

• charge outside: no net flux

• more charges in A:

iE

i

E ,Φ=Φ ∑

Electrostatics

Gauss’ Law (1): continuation

The total flux through a closed surface is equal to the total charge

enclosed divided by the vacuum permittivity.
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• Find the E-field

– if we know the charge distribution and

– it has enough symmetry to let us evaluate the integral.

• Find the charge distribution:

– charges on conducting spheres,

– charge within a given volume.

Electrostatics

How do we use the Gauss’ theorem for:

• First find a surface, the  Gaussian surface to whose area vector is 

parallel to the E-field;

• Use geometry to evaluate A.

• Gauss's law then relates E to the charge inside the surface.

EdA EdA=∫ ∫
��

� �
• Also ensure that on the surface the magnitude of of the E-field is 

constant.

∫∫ == EAdAEEdA

Electrostatics

Calculating the E-field from Gauss's Law
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More Generally

0. =AE perp

��

• If E is parallel to A, make sure that E is constant over the area.

• Use the symmetry of the charge distribution to determine the 

pattern of the field lines.

• Choose a Gaussian surface so that E is parallel to A, or can 

sensibly be divided into parallel and perpendicular components, 

since:

Electrostatics

Calculating the E-field from Gauss's Law

Algorithm of computation:

• Analysis and symmetry

• Approach to solution

• Calculations

• Conclusions

Electric field computation using the Gauss Law

Electrostatics
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∞ extending plane ∞ long cylinder sphere

Gauss “pill box”
Height→0

Gauss cylinder,
Radius r (r < R or  r > R),

length L

Gauss sphere,
Radius r (r <  R or r > R).

Electrostatics

Basic symmetries for GaussBasic symmetries for Gauss’’ LawLaw

Gauss’ Law for a long straight line of charge (linear distribution)

Electrostatics

Question:

Calculate E-field in arbitrary points 

outside of the line

Question:

Calculate E-field in arbitrary points 

outside of the line

Available:

Infinitely long straight line, carrying 

charge density ρl [C/m]

Available:

Infinitely long straight line, carrying 

charge density ρl [C/m]

ρl [C/m]
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Gauss’ Law for a long straight line of charge (linear distribution)

Electrostatics

Analysis and Symmetry

1. Infinitely long line.

2. Charge distribution: homogeneous.

ρl [C/m].

3. Cylinder symmetry.

Imaginary Gaussian surface

R

L

Consequences:

The Gauss imaginary box:

a coaxial cylinder of radius R, 

length L.

Gauss’ Law:
0

Q
E dA

ε
Σ

=∫∫
�� ���
i

Approach to solution and computation

Electrostatics

E normal and constant to surface A2

Due to the symmetry on the Σ

Gauss box:

E parallel to surfaces A1 and A3

L

1A 2A

3A

R

1 3 2

E

A A A

E dA E dA E dA E dA

Σ

Φ = = + +∫ ∫ ∫ ∫
� � � �� � � �
i i i i

Front Back Side
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1 2 3

E

A A A

E dA E dA E dA E dA

Σ

Φ = = + +∫ ∫ ∫ ∫
� � � �� � � �
i i i i

Computation

Electrostatics

0E dA =
��
i

2 2A A

E dA E dA= ⋅∫ ∫
��
i 0E dA =

��
i

2

2 2

2
E

A A

E dA E dA E A E R LπΦ = ⋅ = ⋅ = ⋅ = ⋅ ⋅ ⋅ ⋅∫ ∫

Due to the symmetry E constant on A2

Lateral area of cylinder

Computation

Electrostatics

The total enclosed charge by the Gaussian surface is only the 

segment of the line within the bounds of the front and back surfaces.

0 02 2

l l R
E u

R R R

ρ ρ

π ε π ε
= ⋅ = ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

��
�� �

0

E

Q
E dA

ε
Σ

Φ = =∫∫
�� ���
i

2
E

E R LπΦ = ⋅ ⋅ ⋅ ⋅

( )Q enclosed Lρ= ⋅
�

L

1A 2A

3A

R

ρl [C/m]

Important !!
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Gauss’ Law for an infinite flat surface with charge distribution

Electrostatics

Question:

Calculate E-field in arbitrary points 

outside of the infinite surface

Question:

Calculate E-field in arbitrary points 

outside of the infinite surface

Available:

Infinitely flat charge distribution, 

carrying charge density ρs [C/m2]

Available:

Infinitely flat charge distribution, 

carrying charge density ρs [C/m2]

ρs [C/m2]

Electrostatics

1. Infinite flat surface. 

2. Charge distribution: homogeneous. ρs [C/m2].

3. Plan parallel symmetry. 

The electric field is uniform and normal to the flat surface.

Gauss’ Law for an infinite flat surface with charge distribution

Analysis and Symmetry

+ + + + + + 

+ + + + + +

+ + + + + +

E
�

Consequences:

The Gauss imaginary box  a cylindrical surface with the top 

and bottom surfaces parallel to the charged plane
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Gauss’ Law:
0

Q
E dA

ε
Σ

=∫∫
�� ���
i

Approach to solution and computation

Electrostatics

E parallel  to surface A2

Due to the symmetry

on the Σ Gauss box:

E normal and constant to surfaces

A1 and A3

1 3 2

E

A A A

E dA E dA E dA E dA

Σ

Φ = = + +∫ ∫ ∫ ∫
� � � �� � � �
i i i i

Front Back Side

+ + + + + + 

+ + + + + +

+ + + + + +

E
�E

�

A1 A2
A3

Σ

1 3 2

E

A A A

E dA E dA E dA E dA

Σ

Φ = = + +∫ ∫ ∫ ∫
� � � �� � � �
i i i i

Computation

Electrostatics

3 3A A

E dA E dA= ⋅∫ ∫
��
i

0E dA =
��
i

1 3 1 3

2
E

A A A A

E dA E dA E dA E dA E AΦ = ⋅ + ⋅ = ⋅ + ⋅ = ⋅ ⋅∫ ∫ ∫ ∫

Due to the symmetry E constant on A1 and A3

Top or bottom area of 

cylinder

1 1A A

E dA E dA= ⋅∫ ∫
��
i
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Computation

Electrostatics

The total enclosed charge by the Gaussian surface is only the charge 

on the disk contained within the cylinder. 

02

sE u
ρ

ε
= ⋅

⋅

�� �

( ) sQ enclosed Aρ= ⋅

Uniform field

Important !!

+ + + + + + 

+ + + + + +

+ + + + + +

E
�E

�

A1 A2
A3

Area  A=A1=A3

2
E

E AΦ = ⋅ ⋅

Electrostatics

Electric Field for uniformly charged parallel plate capacitor

In this example we will make use of the result 

obtained from the infinite charged flat surface 

in order to determine the electric field inside 

and outside a parallel plate capacitor.

The plane of the plates are taken to extend to 

infinity.  This is usually a good approximation 

when the plate separation is small compared to 

their area.

Charged surface

Sρ+ Sρ−

+ Q - Q

Area of plates A
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Electrostatics

Electric Field for uniformly charged parallel plate capacitor

Sρ+

+Q

Sρ−

-Q

P
1E
�

2E
�

PLATE (1)                                 (2) For a point P between plates

By superposition:

21 EEE
���

+=

2 2o o

Q Q
E u

A Aε ε

 
= + ⋅ 
 

��

o

Q
E u

Aε
= ⋅

��
s

o

E u
ρ

ε
= ⋅

��

sQ Aρ=

Electrostatics

Electric Field for uniformly charged parallel plate capacitor

Sρ+

+ Q

Sρ−

- Q

PLATE (1)                                 (2) For a point P to the left of both plates

By superposition:

21 EEE
���

+=

2 2o o

Q Q
E u

A Aε ε

 
= − + ⋅ 
 

��

0E =
�

sQ Aρ=

On Left side

P
1E
�

2E
�
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Electrostatics

Electric Field for uniformly charged parallel plate capacitor

o

Q
E u

Aε
= ⋅

��

s

o

E u
ρ

ε
= ⋅

��Sρ+

+Q

Sρ−

-Q

P
1E
�

2E
�

PLATE (1)                                  (2)

0=E
�

0=E
�

P
1E
�

2E
�P

1E
�

2E
�

Electrostatics

Electric Field for uniformly charged parallel plate capacitor

Ideal infinite parallel  plate capacitor Real finite parallel plate capacitor

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

P 1E
�

2E
�

P
1E
�

2E
�

P
1E
�

2E
� +

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-
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Electric Potential

• The electric potential definition

• Equipotential surfaces

• Potential due to a continuous distribution of 

charges

• Calculating the electric field from the 

potential

Electrostatics

Electric Potential

When a test charge ∆q moves from A to P (named origin of potential) in 

a region of electric field E the field does work on the charge. For an 

infinitesimal displacement ds the work done by the field is:

Electrostatics

P P P

AP v v
A A A

L F d s q E d s q E d s= ⋅ = ∆ ⋅ ⋅ = ∆ ⋅∫ ∫ ∫
�� � ��� � ��� �

P
AP

vA
A

L
V E d s

q
= = ⋅

∆ ∫
�� �

The electric potential is defined as the 

potential energy per unit charge, and is 

independent of the test charge ∆q.It has a 

unique value at every point in an electric 

field.

EvA

P

ds

F

q∆
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For VA to be meaningful we must define where the electric potential is

zero in P.  This can be chosen arbitrarily, and common choices are the 

earth (ground) or at an infinite distance from the sources of the electric 

field (only valid if the source is located on a finite domain).

Electrostatics

Electric Potential

• electric potential is a scalar field.

• electric potential does not depend on the chosen path of integration.

• electrostatic field is a conservative field !!!!

Properties of the electric potential

Units are J/C Volts (V)AP
A

L
V

q
=

∆

• SI units of electric potential:

The electric potential difference
The potential difference UAB = VB - VA between two points A and B is then:

P P P B B

AB A B v v v v v

A B A P A

U V V E d s E d s E d s E d s E d s= − = ⋅ − ⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫ ∫
� � � � �� � � � �

Electrostatics

A

P

ds

B

Ev

ds

Since the electric force is conservative, the 

electric potential difference does not 

depend on the integration path, but on the 

initial and final points. Do not dependent 

on the origin of potential.

If we considered a closed curve then:

0vU E d sΓ

Γ

= ⋅ =∫
� �

�
New units for electric field from 

E = (VA-VB)/s uniform field, so E has units of  V/m

Note: 1 N/C = 1 V/m
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Recall the definition of the potential difference between two points A and B: 

B

A B v

A

V V E ds− = ⋅∫
���� Equipotential points:  points where VA = VB.

Equipotential surfaces and equipotential lines

0

B

v

A

E ds⋅ =∫
����

Electrostatics

0vE ds⋅ =
�� ���

Any surface, planar or curved, over which the potential is constant is 

called an equipotential surface. The equipotential surface may or may 

not coincide with a physical surface. 

vE
��

d s
� perpendicular

Electrostatics

Equipotential surfaces and equipotential lines
A

ds
���

B

v
E
�

0vE d s⋅ =
�� �

Equipotential lines 

Collection of all points at same potential form a line in a 2-D view.

Collection of all points at 

same potential forms a surface 

in a 3-D view. vE
�

Equipotential surface
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Electrostatics

Equipotential lines are orthogonal to the electric field lines !!!

0vE ds⋅ =
�� ���

Equipotential lines equation:

0vE ds× =
�� ���

Electric field lines equation:

Example

Electric field of various charges

Equipotential, E field

Potential for point charges

For a collection of point charges the electric potential is found using the 

superposition principle:

i

i

V V=∑

Since V is a scalar it is much easier to evaluate than the vector electric 

field Ev.

Electrostatics

Unsolved question:

If we know V how it is possible to find E?
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Electrostatics

Electric potential for a single point charges

P

A

Ev

ds

2

0

1

4
v

Q r
E

r rπε
= ⋅ ⋅

�
�

Q

On the path from A (rA) to P (rp = ∞), Ev is parallel 

to ds (dr = ds)

2 2

0 0

2

0 0 0

1 1

4 4

1 1 1

4 4 4
A A

P P P

A v

A A A

Ar r

Q r Q r
V E d s d r d r

r r r r

Q Q Q
d r

r r r

πε πε

πε πε πε

∞∞

= ⋅ = ⋅ ⋅ = ⋅ ⋅ =

 
= ⋅ = − = ⋅ 

 

∫ ∫ ∫

∫

� �
� �� �

It is customary to choose the potential 

to be zero at rp = ∞.

V is constant on spherical 

surfaces centered on the 

point charge.

∞

E
�

Q

Electrostatics

Electric potential for a single point charges

Equipotential, E lines

2

0

1

4
v

Q r
E

r rπε
= ⋅ ⋅

�
�

0

1

4

Q
V

rπε
= ⋅
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In the case of a continuous distribution of 

charge we first divide the distribution up into 

small pieces, and then we sum the contribution, 

to the electric potential, from each piece:

Electrostatics

Potential produced by a continuous 

distribution of charge

V

Z

Y

dQ

dv=dx dy dz

r

X

A

0

1

4
A

dQ
dV dv

rπε
= ⋅ ⋅

0

1

4
A

v

dQ
V

rπε
= ∫

Volume - v

Electrostatics

Potential produced by a continuous 

distribution of charges

Volume charges vdQ dvρ= ⋅

Surface charges sdQ dAρ= ⋅

Line charges l
dQ dlρ= ⋅

0

1

4

v
A

V

V dv
r

ρ

πε
= ∫

0

1

4

l
A

S

V ds
r

ρ

πε
= ∫

2

0

1

4

v
A

V

r
E dv

r r

ρ

πε
= ⋅∫

�
��

0

1

4

s
A

S

V dA
r

ρ

πε
= ∫ 2

0

1

4

s
A

S

r
E dA

r r

ρ

πε
= ⋅∫

�
��

2

0

1

4

l
A

S

r
E ds

r r

ρ

πε
= ⋅∫

�
��
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Field and electric potential

Electrostatics

( )

( , , )

( , , )
P fix

A v
A x y z

V x y z E d s= ⋅∫
��� �

( , , ) ( ) ( )vA vx vy vz
dV x y z E d s E i E j E k dx i dy j dz k= − ⋅ = − ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ + ⋅

�� � � � � � � �

( , , )A vx vy vzdV x y z E dx E dy E dz= − ⋅ − ⋅ − ⋅

But:

( , , )A

V V V
dV x y z dx dy dz

x y z

∂ ∂ ∂
= − ⋅ − ⋅ − ⋅

∂ ∂ ∂

; ;vx vy vz

V V V
E E E

x y z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂

Field and electric potential

Electrostatics

; ;vx vy vz

V V V
E E E

x y z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂

v

V V V
E i j k V gradV

x y z

∂ ∂ ∂
= − ⋅ − ⋅ − ⋅ = −∇ = −

∂ ∂ ∂

��� � � �

Important !!
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Electrostatics

0

v

Q
E d A

ε
Σ

Σ

⋅ =∫
�� ��

v

V

Q dvρ

Σ

Σ = ⋅∫

Laplace and Poisson equations

0

1
v v

V V

E d A divE dv dvρ
ε

Σ ΣΣ

⋅ = ⋅ = ⋅∫ ∫ ∫
�� �� ��

0

1
v v

V

E d A dvρ
ε

ΣΣ

⋅ = ⋅∫ ∫
�� ��

Electrostatics

0

1
v v v

V V

E d A divE dv dvρ
ε

Σ ΣΣ

⋅ = ⋅ = ⋅∫ ∫ ∫
�� �� ���

0

v
vdivE

ρ

ε
=

��

vE gradV= −
��

0

( ) vdiv gradV
ρ

ε
− =

2

0

vV V
ρ

ε
∇ = ∆ = −

0vρ =
Free space – Laplace equation

0vρ ≠
Materials – Poisson equation 

Laplace and Poisson equations
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Potential V = f (x,y,z) ?

Solution of Laplace/Poisson will 

depend on boundaries.

Boundary conditions:

V1 , V2 and V3 = f (x,y,z)

z

x
y

V1

V2

V3

ρ

Spatial charge density: ρv =f (x,y,z)

Special cases:

• cylindrical geometry

• spherical geometry

Electrostatics

Poisson/Laplace in 3 D

2 2 2

2 2 2

0

( , , ) vV x y z
x y z

ρ

ε

 ∂ ∂ ∂
+ + = − 

∂ ∂ ∂ 

Special case 1: Cylindrical  geometry
z

r

x

y

θ

2 2
2

2 2 2

0

1 1 vV r V
r r r r z

ρ

θ ε

 ∂ ∂ ∂ ∂ 
∇ = + + = −  

∂ ∂ ∂ ∂  

If r – dependence only:

ρρρρv and boundaries will be f (r).

Thus: V will be f (r) only

Example: V=V1 at r1 and V2 at r2 , and ρρρρv = 0

const.) : c' and (c          'ln.)(

0
1

crcrV

r

c

dr

dV
c

dr

dV
r

dr

dV
r

dr

d

r

+=

=⇒=⇒=








12

1
121

lnln

lnln
)()(    :boundariesWith   

rr

rr
VVVrV

−

−
−+=

Electrostatics

Poisson/Laplace in 3 D
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Conductors in electrostatic field

• a conductor can conduct, or convey, electric charge.

• in static situations a conductor is a medium in which the internal electric   
field is always zero.

• it follows that all parts of the conductor are at the same potential.

e e e e e0=E
�

V Constant on conductor

conductor

Electrostatics

{e} Free charges

Consider the conductor placed in an  external electric field exE
��

e e
e

exE
��

Force on electrons
ex

F e E= − ⋅
�� ����

Time t = 0

Electrostatics

Conductors in electrostatic field

A very short time after        is applied charge redistribution stops.exE
��

Time t > 0
e
e

+

+

Build up of negative charges Build up of positive charges

exE
��



48

Electrostatics

Conductors in electrostatic field

The separation of charge produces an internal electric field    to the 

conductor
iE
��

e

e

e

e

+

+

+

+

i
E
�

Redistribution of charge continues until 

the internal electric field magnitude 

equals that of the applied electric field.

iE
�� e xE

��

0

net ex i

net

E E E

E

= +

=

�� �� ��

��

Inside conductor the net electric 

field is zero after charge 

redistribution

Time t ≈ 10-10 s

Electrostatics

Conductors in electrostatic field

0=E
�

Gaussian surface, Area A

+

+

+

+

+

+

+

+

+

+

+

+

+

Surface charge density ρS

E
��

S

o

A
E A

ρ

ε
⋅ =

Gauss’s Law

0S
Eρ ε= ⋅

If E = constant,           constant !!S
ρ
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Electrostatics

Conductors in electrostatic field

Consider a spherical conducting shell.  What is the electric field in the inside 

of the shell when an external electric field is applied to the shell and all 

charges have been redistributed?

exE
��

insideE
�

Assume that                   after charge 

redistribution has occurred.

0insideE ≠
�

insideE
�

2Γ

0=E
�

1Γ
0=E

�

1 2

0insideE d s E d s E d s

Γ Γ Γ

⋅ = ⋅ + ⋅ =∫ ∫ ∫
�� � �� � �� �

� � �

0 since 0E =
� Only way to get 0 for all paths Γ2 is to have 0insideE =

�

Electrostatics

0=E
�

The electric dipole

The dipole we know  water

−
+ +

+

−

≅

CmHN

CmClH

CmOH

30)(

3

)(

30)()(

30)()(

2

100.5

104.3

101.6

−+−

−−+

−−+

×=

×=

×=

Dipole moment of selected 

molecules
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Electrostatics

The electric dipole

An electric dipole is formed by two equal but opposite 

polarity charges, which are in close proximity.

A dipole is characterized by its electric dipole moment:

p Q l ,C m= ⋅ ⋅
�� � -Q Qp

��

We will consider the field of the dipole at distances much larger 

than its own length l, which is by definition infinitesimal.

l
�

Electrostatics

The electric dipole

2 3

0 04 4
A

Ql cos p r
V

r r

θ

πε πε

⋅
≈ ≈

�� �

Thus, the potential of an electric dipole is:

Using the expression for the gradient in spherical coordinates (due to the 

symmetry), the electric field vector is obtained:

( )3 3

0 0

2
4 4

RA

p r Ql
E gradV grad cos u sin u

r r
θθ θ

πε πε

 ⋅
= − = − = ⋅ + ⋅ 

 

�� �
�� � �

Note: the potential V drops off as 1/r2 for a dipole

Note: the electric field of a dipole decrease with distance as 1/r3
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Electrostatics

The electric dipole

z

p
�

Electric field lines

Equipotential lines 

( )3

0

2
4

R

Ql
E cos u sin u

r
θθ θ

πε
= ⋅ + ⋅
�� � �

3

04
A

p r
V

rπε

⋅
=

�� �

Electrostatics

The electric dipole

The dipole in an external electric field

E
��

-Q

Q

p
�� F

F α

The dipole tends to rotate so that its moment aligns with the external field.

The torque is:

( ) ( )m l F l E Q l Q E p E m p E sin , Nmα= × = × ⋅ = ⋅ × = × ⇒ = ⋅ ⋅
�� � �� � �� � �� �� ��

This, the electric dipole moment is the torque experienced by the dipole in 

an external field of unit intensity and direction orthogonal to the dipole 

length.
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Electrostatics

Dielectric materials and polarization

Electrostatics

Dielectric materials and polarization

The above examples illustrates the so called electronic polarization, which 

occurs in dielectrics whose atoms and molecules are originally neutral. 

The process of polarization is balanced by the Coulomb attractive force.

Ionic polarization occurs in molecules consisting of positively and negatively 

charged ions, which are originally mixed and have zero net charge.

Orientational polarization occurs in materials, which consist of sub-domains 

with permanent microscopic separation of charges (electrets, polar liquids, 

etc.)

Each microscopic polarized region is characterized by its dipole moment:

p Q l= ⋅
�� �
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Electrostatics

Dielectric materials and polarization

Thermal agitation randomizes the 

molecules orientations. The average value 

of the dipole moments taken over any 

volume is zero:

No external electric field applied

0
i

p =∑ �

An external electric field produces a torque 

on each of the dipole moments aligning 

them with the electric field lines.

External electric field applied

0ip ≠∑ �

- +

- +

- +

- +
- +

- +

- +

- +

- +

- + - +

E
�

-
+

-
+

-
+

-+ -
+

-
+

-+

- +

-
+ -

+

Electrostatics

Dielectric materials and polarization

To quantify the polarization effect on a macroscopic level, the

polarization vector      as the dipole moment per unit volume is defined:P
��

2

0

i

i

v

p
d p

P lim ,C / m
v dv∆ →

= =
∆

∑
��

��
��

d p P dv= ⋅
�� �� - +

- +
- +

- +
- +

- +
- +

- +
- +

- +

- +
- +

- +
- +

- +
- +

- +
- +

- +
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- +
- +

- +
- +

- +
- +

P
��

dv

If a piece of dielectric is immersed in 

external electric field, the dipoles will 

align (more or less) with the field.

The internal charges will compensate each other but uncompensated 

surface charges will appear at both sides of the dielectric.
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Electrostatics

Dielectric materials and polarization

E
��

l
�

d A
��

Closed surface Σ

p

P dv
dQ

l

P dA l cos
P cos dA

l

α
α

⋅
− = =

⋅ ⋅ ⋅
= = ⋅ ⋅

dv

P
��

pdQ−

pdQ P d A− = ⋅
�� ��

pQ P d AΣ

Σ

= − ⋅∫∫
�� ��

�

The polarization charges for 

the entry closed surface is:

p vp

V

Q dv P d Aρ

Σ

Σ

Σ

= ⋅ = − ⋅∫∫∫ ∫∫
�� ��

��

α

Equivalent polarization volume charge distributions

Electrostatics

Dielectric materials and polarization

p vp

V V

Q dv divP dvρ

Σ Σ

Σ = ⋅ = − ⋅∫∫∫ ∫∫∫
��

� � vp divPρ = −
��

Thus, the polarization volume charge density is:

The polarization surface charge density will be: sp Sdiv Pρ = −
��

( )2 112 12sp Sdiv P n P P n Pρ = − = − ⋅ − = ⋅
�� � �� �� � ��

Where:

is the unit vector to the interface

1
2

12n
�

1P
��

( )2 0P in vacumm=
��

12n
�

( )1P P in dielectric=
�� ��

dielectric
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Electrostatics

Electric field in dielectric materials

We now recognize two types of charges: free charges (in conductors) and 

bound charges (in dielectrics). The bound charges represents the behavior 

of the dielectrics atoms/molecule in vacuum.

We apply Gauss law for the electric flux density in vacuum in the presence 

of both types of charges:

pQ P d AΣ

Σ

= − ⋅∫∫
�� ��

�
0

f p
Q Q

E d A
ε

Σ Σ

Σ

+
⋅ =∫∫
�� ��

�
but:

0

f
Q P d A

E d A
ε

Σ

Σ

Σ

− ⋅

⋅ =
∫∫

∫∫

�� ��

�� �� �
�

0 fE d A P d A Qε Σ

Σ Σ

  
⋅ ⋅ + ⋅ = 
  
∫∫ ∫∫
�� �� �� ��

� �

Electrostatics

Electric field in dielectric materials

0 fE d A P d A Qε Σ

Σ Σ

  
⋅ ⋅ + ⋅ = 
  
∫∫ ∫∫
�� �� �� ��

� �

In an arbitrary medium (other that the vacuum) the electrostatic field is 

completely defined using 2 vector fields:

D, E
�� ��

( )0 fE P d A Qε Σ

Σ

⋅ + ⋅ =∫∫
�� �� ��

�

Now we can define a vector, which depends on the free source charges

only, and has nothing to do with the properties of medium:

0D E Pε= ⋅ +
�� �� ��

called electric flux density or electric displacement.

[ ] 21 1
SI

D C / m= fD d A Q Σ

Σ

⋅ =∫∫
�� ��

�



56

Electrostatics

Laws of electrostatics

The electric flux law
(generalization of the Gauss law valid only in vacuum)

Definition:

The total flux of the electric flux vector through a closed surface is equal 
to the total real free charge enclosed by the surface.

f
D d A Q Σ

Σ

⋅ =∫∫
�� ��

� Integral form of the law

f vf

V V

D d A divD dv Q dvρ

Σ Σ

Σ

Σ

⋅ = ⋅ = = ⋅∫∫ ∫∫∫ ∫∫∫
�� �� ��

� � �

vf
divDρ =
��

Differential form of the law

Electrostatics

Laws of electrostatics

The polarization law

From experimental studies, it is found that the polarization vector (the 

temporary component) is strongly related to the electric vector field. For 

most common dielectrics, these two vectors are collinear and proportional 

for a wide range of values of E (linear materials).

0t e
P Eχ ε= ⋅ ⋅
�� ��

Valid just for linear materials

where:       is the electric susceptibility of the material. eχ

In this case using the relation between                       we will have:tE,D and P
�� �� ��

( )0 0 0 0 1t e eD E P E E Eε ε ε χ ε χ= ⋅ + = ⋅ + ⋅ ⋅ = ⋅ + ⋅
�� �� �� �� �� ��

r
ε

D Eε= ⋅
�� ��

Relative permitivity
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Laws of electrostatics

The polarization law

The dielectric constant      is not really a constant. It may depend on 

frequency or on the field intensity. It is also called relative dielectric 

permittivity.

r
ε

When the dielectric permittivity depends on the electric field E, it is said 

that the medium is nonlinear, because all the field relations become 

nonlinear equations.

When the dielectric permittivity depends on the position in the volume of 

the dielectric body                 it is said that the problem is inhomogeneous, 

as opposed to the homogeneous case when the properties of the material are 

constant throughout the volume. 

( )x, y,zε

Moreover, the dielectric properties may depend on the direction of the

applied field because of certain properties of crystal lattices, etc. This is

called anisotropy of the dielectric material.

Electrostatics

Laws of electrostatics

The polarization law

Then, the relation between the electric flux density vector and the electric 

field vector is a tensor one:

D Eε= ⋅
�� ��

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E

D E

D E

ε ε ε

ε ε ε

ε ε ε

    
    =     
        

Fortunately, it is often suffices to assume that the medium is homogeneous, 

linear and isotropic. This is the simplest possible case.

Final note on the physical meaning of the relative dielectric permittivity: it 

shows how many times the electric field force is decreased in the volume 

of the dielectric due to the cancellation effect of the polarized microscopic 

dipoles.

Note:
In general the polarization vector consist in 2 components:

- a temporary component (Pt) and a permanent one (Pp) 
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Laws of electrostatics

The relation between D, E and P vectors

0 t pD E P Pε= ⋅ + +
�� �� �� ���

The vector sum between polarizations (both components) and the 

electrical field intensity, multiplied with the permitivity of the vacuum, 

is equal, at any moment and point, with the electrical flux density:

For materials without permanent polarization: 0 tD E Pε= ⋅ +
�� �� ��

D Eε= ⋅
�� ��For linear materials without permanent polarization:

D Eε= ⋅
�� ��

For materials with anisotropy and without permanent polarization:

Electrostatics

Boundary conditions in electrostatics

Most practical problems involve more than two regions of different 

electric properties. The neighboring regions are separated by surface 

called boundaries (also interfaces). The field behavior at these

boundaries is described by certain equations: the boundary conditions. 

These equations are derived from the general field equations, which are 

valid in a volume. The boundary conditions are essential to the solution 

of any electrostatic field problem. These problems would have a unique 

solution only it its boundary conditions are specified.  

The boundary conditions of the tangential to the interface field components

s∆
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Boundary conditions in electrostatics

( ) ( )2 1

0n E E × − =
  

� �� ��

The tangential to the interface components of the electric field vector 

are continuous across the material interface. !!

( ) ( )( )2 1

sn D D ρ⋅ − =
�

( ) ( )2 1

2 1n n s
E Eε ε ρ⋅ − ⋅ = !!!

At dielectric interface, if there is not free surface charge, then the normal 

flux density will be continuous across the surface.

Electrostatics

Boundary conditions in electrostatics

( ) ( )1 2

n n
D D=

( ) ( )1 2

1 2n nE Eε ε⋅ = ⋅

( )

( )

2

1

1

2

n

n

E

E

ε

ε
=

The normal electric field is 

discontinues across dielectric 

interface.
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Boundary conditions in electrostatics
At dielectric interface, the normal flux density and the tangential electric 

field are continuous. This would cause the electric field vector to change 

its direction abruptly (ONLY for surfaces without charge distributions):

( ) ( )
2 2

1 2
E Eτ τ=

( ) ( )1 2

1 2E sin E sinα α⋅ = ⋅

( ) ( )1 2

1 2n n
E Eε ε⋅ = ⋅ ( ) ( )1 2

1 1 2 2E cos E cosε α ε α⋅ ⋅ = ⋅ ⋅

Very important !!

0sρ =

1 1

2 2

tan

tan

α ε

α ε
=

Electrostatics

Capacitance

Capacitance is a property of a geometric configuration, usually two 

conducting objects separated by an insulating medium.

The system of two conductors, each carrying equal charge is known as a 

capacitor.

Capacitance is a measure of how much charge a particular configuration is 

able to retain when a battery of U volts is connected and then removed.

The amount of charge Q deposited on each conductor will be proportional 

to the voltage U of the battery and some constant C, called the capacitance.

Q
C

U
= Capacitance: Farad ={C/V}=F

Q

Q−

U

E lines

By definition:



61

Electrostatics

Capacitance

A general expression for the capacitance in terms of the E vector:

2

1

P

P

D d A
Q

C
U

E d s

Σ

⋅

= =

⋅

∫∫

∫

�� ��

�� �

If the region surrounding the electrodes is homogeneous of dielectric 

permittivity, then the capacitance is expressed only in terms of the E vector:

2

1

P

P

E d A

C

E d s

ε Σ

⋅

= ⋅

⋅

∫∫

∫

�� ��

�� �

If the capacitor is given, with a homogeneous dielectric, its 

capacitance is a function of the geometrical dimensions, which 

characterizes the shape, and the relative position of the plates and is 

direct proportional with the dielectric permitivity:

In the case of non-homogeneous dielectric media, the permitivity of 

the dielectric is different, and the capacitance is a function of the 

following form:

Electrostatics

Capacitance

( )1 2 nC f g ,g ,...,gε= ⋅

( )1 2 1 2n n
C f , ,..., ;g ,g ,...,gε ε ε=
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Calculation of the capacitance

Algorithm of the capacitance computation:

• Suppose the two conductors charged

• Compute the electric field intensity

• Compute the electric voltage between the two conductors

• Apply the capacitance definition

r2
r1

Electrostatics

Capacitance of spherical  capacitor

Q

1. Supposed the conductors charged with Q and -Q

r
dA

2. Apply the flux law.

24D d A D dA D dA r D Qπ

Σ Σ Σ

⋅ = ⋅ = ⋅ = ⋅ ⋅ ⋅ =∫∫ ∫∫ ∫∫
�� ��

�

D
D Eε= ⋅ 24

Q
E

rπ ε
=

⋅ ⋅ ⋅

3. Compute the voltage between the conductors

2 2

1 1

2 2

2 2

1 2
1 1

1 1

4 4 4

r r

AB

r r

Q Q dr Q
U E d s E ds dr

r r r rπ ε π ε π ε

 
= ⋅ = ⋅ = ⋅ = = − 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  ∫ ∫ ∫ ∫
�� �

4. Apply the capacitance definition
AB

Q
C

U
= 1 2

2 1

4 r r
C

r r

π ε⋅ ⋅ ⋅ ⋅
=

−

Σ

ε
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14C rπ ε= ⋅ ⋅ ⋅If: 2r → ∞

Capacitance of parallel plates

A
C

d

ε⋅
=

sE
ρ

ε
=

s

Q

A
ρ =

Q
E

A ε
=

⋅

The electric field inside the parallel plates:

2 2 2

1 1 1

AB

Q d
U E d s E ds E ds E d

A ε

⋅
= ⋅ = ⋅ = ⋅ = ⋅ =

⋅∫ ∫ ∫
�� �

AB

Q
C

U
=

+Q -Q

E

UAB

A

d

ε

Electrostatics

Capacitance of cylindrical capacitor

2 h
C

b
ln

a

π ε⋅ ⋅ ⋅
=

Prove that:
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In order to establish an electrical field in a space domain where this is 

initially null, it is necessary to move electrical charges from infinite to the 

bodies. The electrical field energy is equal to the total mechanical work

needed to transport these charges. 

Electrostatic field energy

In order to define the energy in such a way, some hypotheses have to be 
made:

the medium is isotropic, linear and without permanent polarization.

the storage of the charges on the conductors is made very slowly, in  
order to consider the field as being electrostatic and so that we don’t have 
irreversible transformations of the mechanical work done in heat.

consider that the conductive system is immobile, such that we don’t lose 
mechanical work to deform or move the conductors.

Electrostatics

Electrostatic field energy

The final state of the conductors will be:

1 2

1 2

i n

i n

Q ,Q ,........Q ,....Q

V ,V ,........V ,....V

Suppose n spherical conductors and the following additional assumptions:

All conductors are in the initial state without charges:

0

0

i

i

Q

V

=

=
1 2i , ,..,n∀ =

An intermediary state will be established proportionally, meaning that 

exist the following relations:
'

i i

'

i i

Q Q

V V

λ

λ

= ⋅

= ⋅
1 2i , ,..,n∀ =
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Electrostatic field energy

1

1

2

n

e i i

i

W V Q

=

= ⋅ ⋅∑

The above relation gives us the expression of the energy stored in the 

electrical field of some conductors that have the charges and potentials

Electrostatics

Electrostatic field energy

+  -

+Q                -Q

s Q
E

A

ρ

ε ε
= =

⋅

�

Consider a capacitor at potential difference U12 and 

of charges +Q , -Q on the plates.  Area of plates (A) 

and spacing (d).

d

A

U12

V1 V2

Energy stored in the capacitor:

But:
12

AQ
C

U d

ε
= =

1 2 12

1

1 1 1 1

2 2 2 2

n

e i i

i

W V Q V Q V Q U Q

=

= ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅∑
2

12 12

1 1

2 2
eW U Q C U= ⋅ ⋅ = ⋅ ⋅

V is the volume between plates and NOT potential

12U E d= ⋅

( )
2 2 21 1 1

2 2 2
e

A
W E d A d E V E

d

ε
ε ε

⋅ 
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ 

 

ε
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Electrostatic field energy

21 1 1

2 2 2

e
e

W
w E E E D E

V
ε ε= = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

This relation is in opposite with the first one for the electrostatic field 

energy (which expresses the energy with respect to the potentials and 

charges and does not specify where it is located - on the conductors or 

inside the dielectric). we  is called as electrostatic energy density.

1

2
ew D E= ⋅ ⋅

�� ��
In, general:

The electrical field energy is located inside the dielectric (wherever exists 

an electrical field) and not inside conductive bodies (where the field is 

zero).

The total electrical field energy is: 1

2
e e

V V

W w dv D E dv= ⋅ = ⋅ ⋅∫∫∫ ∫∫∫
�� ��

Conclusion:

!!!!


