The Theory of

Electromagnetic Field

e Aims

About the Course

— To provide students with an introduction to electromagnetism

* Objectives

— To introduce the principles and applications of electromagnetism

— To understand and apply the laws governing electric and
magnetic behaviour

— To be aware of some of the applications of electromagnetic

behaviour
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INTRODUCTION

Statics and Dynamics in Electromagnetism

— electrostatic fields

velocity and zero acceleration)

Steady currents — magnetostatic fields

(charges have non- zero velocity and zero acceleration)

g currents — electromagnetic field

e non-zero velocity and non-zero acceleration)




Approach to Studying Electromagnetics

F undgmerztal laws of Maxwell’s

classical .

electromagnetics equatIOIlS

' ' '
Special Electro- Magneto Electro-
cases statics -statics magnetic
o waves
Statics: é =0
ot
* Axiomatic approach d<<i
» Based on Helmholtz
theorem
STI (International System of) Units
Fundamental SI Units
Quantity Unit Abbreviation

" |ien gth meter m

mass kilogram k

< time second S

current ampere A
A

temperature kelvin K

luminous candela cd

intensity




Fundamental Vector Field Quantities in
Electromagnetics

Electric field intensity (E)
units = volts per meter (V/m = kg m/A/s?)
Electric flux density (electric displacement) (B)
units = coulombs per square meter (C/m? = A s /m?)

Magnetic field intensity (E)
units = amps per meter (A/m)

Magnetic flux density (E)
units = teslas = webers per square meter
(T = Wb/ m? = kg/A/s?)

Fundamental Vector Field Quantities in
Electromagnetics (Cont’d)

* A field is a spatial distribution of a quantity; in
general, it can be either scalar or vector in nature.
* When an event in one place has an effect on

something at a different location, we talk about the
events as being connected by a field.

 In general, the fundamental vector field quantities
in electromagnetics are vector functions of both
position (in three-dimensional space) and time.




Three Universal Constants

the velocity of an electromagnetic wave (e.g., light) in free
space (perfect vacuum)

c~3x10% m/s

the permeability of free space
1, =471 x107 H/m

the permittivity of free space

g, ~8.854x107" F/m

Relationships Involving the Three Universal

Constants
1
C =
v Ho&y
In free space:
B=uH




Chapter 1

Electrostatics

Electrostatics

Electric Field in Vacuum

Basic Definitions
Electric Charges

Coulomb’s Law and Definition of Electric Force
and Intensity

The Electric Field for Continuous distributions

Gauss Law




Electrostatics

The concept of a field is used to describe “action at a distance” — a
disturbance or input at one point can have an effect or output at a
distance point. The region where the effect of this coupling media is
felt is the field, described by its (vector) field strength.

Electrical phenomena caused by friction are part of our everyday
lives, and can be understood in terms of

The of electric charge can be observed in attraction/repulsion
of various objects when “charged”.

Electrostatics is the branch of electromagnetism dealing with the
effects of electric charges at rest

The fundamental law of electrostatics is Coulomb’s law which is
based on physical observation and cannot be deduced logically or
mathematically from any other physical law.

Electrostatics

The is a fundamental property of matter. It is
measured in Coulombs (C). It was agreed that the electric current
unit Ampere (A) would be chosen as a basic unit in SI. Thus,
Coulomb is a secondary unit derived as:

. d

i=—9C _1c=1ax1s
dt

i is the electric current in Amperes (A)

Q is the electric charge in Coulombs (C)

t1s time




Electrostatics

Evidence for electric charges is everywhere, e.g.
— static electricity
— lightning
Objects may become charged by contact and frictional forces.

Benjamin Franklin (1700’s) discovered that there are two types of
charges:

— positive charge
— negative charge

Franklin also discovered that like charges repel and unlike
charges attract one another.

Electric charge is:
— quantized (Millikan)
— conserved (Franklin)

Electrostatics

Classes of Materials

Conductors are materials in which charges may move freely (e.g.
copper).

Insulators are materials in which charges cannot move freely
(e.g. glass).

Semiconductors are materials in which charges may move under
some conditions (e.g. silicon).

Charges and the Earth

The earth acts as a near-infinite source or sink of charges, and
therefore its net charge cannot easily be changed.

Any conductor in contact with the earth is said to be grounded
and cannot receive a net charge. (principle of lightning rod)




Electrostatics

Induced Charge

* Charged objects brought close to a conductor may cause charge to
redistribute (polarize the conductor).

* If a polarized conductor is momentarily grounded, charge will be
transferred to/from the earth, and it may be left with a net charge
(by Induction).

* Objects may be charged by
— conduction (requires contact with another charged object).

— induction (requires no contact with another charged object).

Electrostatics

is associated with matter. Therefore, it has finite volume.
However, volume charges Q can be always considered made of
even smaller volumes. This is particularly useful when the volume
of charges has inhomogeneous charge distribution.

Continuous Distributions of Charges
can occurs as:
* Point charges (C)
* Volume charges (C/m?) <=

* Surface charges (C/m?)

Line charges (C/m)




Electrostatics

Point charges

Are charges whose volume can be considered infinitesimally

small (a point) in comparison with the distance from its center at
which its field is analyzed.

Qo
9 | Q3
Q [+ On
Q
Q2 o
Q5

Electrostatics

Are useful when the physical 3-D charges
are spared in wide thin sheets whose

_ thickness is negligible in comparison with
dQ=p,(x.y) dx dy their length and width. Beside, it can be
assumed that their charge distribution
variations with the height are negligible.

Surface charges

Surface charge density definition [C/m?]

_ . AQ _dQ
Py = AA ™ dA
dA=dx dy
0=p, da
S

10



Electrostatics

The surface charges imply the symmetry of the field with

respect to their plane.
y
n ) |:force lines
L -
E N
= < "
| o ;
g | »
& «
3 «
Electrostatics
Line charges Are useful approximation for charges whose
volume has two of its dimensions negligibly
small with respect to the other dimensions
a (the length). The variations of the charge
dz distribution in the cross-section are negligibly.
“ Line charge density definition [C/m]
z A d
p, = lim AQ = Y
A0 Al dl
0= J p,-ds
c

11



Electrostatics

Volume charges

dV=dx dy dz

Volume charge density definition [C/m?]

Electrostatics

2. Coulomb’s law (1785)

1
— QI%Z :_}721’ N
47e R
e

12

Coulomb’s law states that the force between two electrical
charges at rest is proportional to the amount of their
charge and inverse proportional to the square of the
distance between them.

The inverse square law is a universal property of fields in
our 3-D world.

Charges of the same sign repel each other, and charges
of the opposite signs attract each other.

12



Electrostatics

The constant of proportionality & depends on the system
of units used. In SI & =1/(47€)
Nxm® _ Nxm® _Vxm

k=
&1 c? A*xg? C

By experiment (in air/vacuum), if the force is measured in
newtons, the distance in meters, and the charge in ampere-
seconds (coulombs):
k=9.0x10’
Theoretically, this constant in the SI system must be exactly
k=107¢?
where ¢ is the speed of light.

Electrostatics

The constant
1

£=——
drk

is called dielectric permittivity, which in vacuum is

1 1107

g: = =
T 4nct 107 4r.9-10° 367

A more precise value is

£ =8.856x107"?, F/m=C/(Vxm)

The dielectric permittivity of materials depends on the ability of
matter to polarize under the influence of external electric field.

13



Electrostatics

The dielectric permittivity of matter is usually specified
relative to that of vacuum via the relative dielectric
permittivity (dielectric constant) €&,

E£=E,§,
For air: £, = 1.0006

For water: ¢, =80
Urban (dry) ground: &, =3

Rural (moist) ground: &, =14

Electrostatics

The electric field (intensity) vector F

The electric field vector is the force exerted on a unit force.

E=limA—F=d—F,N/C=V/m ‘@F:Aqf, N

Ag—0 Aq Aq

Here, Aq is a test (probe) charge, which means that it is small
enough not to disturb the measured original field of the source

charge

14



Electrostatics

The electric field (intensity) vector E

The electric field vector is the force exerted on a unit force.

= AF dF = =
E=lim—=—+ N/C=V/ =Ag-
e " e F=agE N

Here, Ag is a test (probe) charge, which means that it is small
enough not to disturb the measured original field of the source

charge

Electrostatics

Electric field intensity of a single point charge g

AF =

E
E = lim AR
Ag—0 Aq

Thus electric field from a single charge is:

15



Electrostatics

Electric field intensity
General Properties of an Electric Field

* Electric field is generated by any charged object.

 Itis a vector field and obeys the principle of superposition,
1.e., the field of a system of charged objects is equal to the
(vector) sum of the field of each individual charged object in
the system.

» The electrostatic force between charged objects is mediated
by the electric field.

Electrostatics

Electric field intensity
Electric Field Lines

e A visualization tool to illustrate the geometry of an electric
field.

 Electric field lines originate from positive charges and
terminates at negative charges.

» The direction of the electric field at any location is tangential to
the field line there.

* The magnitude of the electric field at any location is
proportional to the density of the lines there.

16



Electrostatics

Electric field intensity

Examples:
v E
E
Electrostatics
Electric field intensity
A _ Examples:

Uniform electric field: an electric

o i — field that has the same magnitude
A and direction at every point.

U]

17



Electrostatics

Electric Field due to Multiple Point Charges

The force on a test charge is then given by

AF =S AF

i
i=1

so the electric field is, by definition, given by

P o

Principle of superposition!

Electrostatics

Electric Field due to Multiple Point Charges

Principle of superposition

This principle is of major importance to the solution of field
problems in linear media, i.e. media whose electromagnetic
(EM) properties do not depend on the field’s intensity. In the
case of electrostatic fields (ESF), the EM property that matters
is the dielectric permittivity. If it does not depend on E, then

the medium is linear.

The ESF of multiple charges at any point is a vectorial sum

of the fields created by each individual charge:

18



Electrostatics

Electric Field due to Multiple Point Charges

Principle of superposition (cont)

Electrostatics

Electric field due to continuous charges distributions

When the field is due to charges, which are distributed throughout a
volume with some known density 2, C/m?3, then this volume is
represented by an (differential)

dO=p,-dv, C

differential charge is in Thus, it generates
a differential “part” of the field, which is:

dE=-1 9% v/m
4rme, r

19



Electrostatics

Electric field due to continuous charges distributions

The total field is obtained via the principle of superposition.

A summation over differential contributions has to be performed:
this is integration (volume integration)

E= ! -%Vzdv,

V/m
Ame, S rr

When distributed surface charge is present, it is broken down into
differential surface charges, each of which is described by its surface
density p  C/m?*:

dO=p,. -dA, C

Electrostatics

Electric field due to continuous charges distributions

e L p”dA V/m
4re, Sr r

When distributed line charge is present, it is broken down into
differential line charges, each of which is described by its line
density ; C/m:

dO=p,-ds, C

Thus, the field generated by linear charges is found by the
following line integrals:

= [2

ds, V/m

N\Nl

20



Electrostatics

Electric field due to continuous charges distributions

Electric field computation using the superposition principle

Algorithm of computation:

e Analysis and symmetry
* Approach to solution
* Calculations

Electrostatics

Electric field due to continuous charges distributions

Example no.1

Electric field of a thin disk

Available :

A thin circular disk with radius R
and charge density p [C/m?]

Question :

Calculate E-field in arbitrary
points a both sides of the disk

21



Electrostatics

Electric field due to continuous charges distributions

Analysis and Symmetry

1. Charge distribution:
p, [C/m?]

2. Coordinate axes:

Z-axis = symm. axis,
perpend. to disk

3. Symmetry circle: cylinder

4. Cylinder coordinates:

r’z,¢

Electrostatics

Electric field due to continuous charges distributions

Analysis, field build-up

1. XYZ-axes
2. Point P on Y-axis

3.all Q,’satr; and @,
contribute E; to E in P

4.E;.,, E;

Lxy’ 1,7
5.expect: XL E,;,, =0,

to be checked !!
6.E=FE.e, only!

22



Electrostatics

Electric field due to continuous charges distributions

Approach to solution
| 1. Distributed charges
2. dE = d0 ser
4reyr

3. Rings and segments

4.dQ = p,.dA= p, (da.)(a dp)

6. dEZ :%(er .ez)
&

Electrostatics

Electric field due to continuous charges distributions

Ri 15 dEZ :%(er .ez)
; 4eyr
2. dQ = p,.dA= p, (da.)(a dp)
3' e,’ez =Ccosa = ge

\¢a2 +ZP2

23



Electrostatics

Electric field due to continuous charges distributions

Calculatim%ls (2) 27 R

J' pdaad(p Zp

0 a +ZP \’a2+ZP2

5. E,=ts|1- %

2"90 \/ZP2+R2_

6. If R — infinity :

= ps
E 25

Electrostatics

Electric field due to continuous charges distributions

Conclusions

P field strength independent
\ of distance to disk =>

homogeneous field

24



Analysis:

* oo Jong wire: p, [C/m]
* cylindrical symmetry

dz

1
N

Electrostatics

Problem: E, in point P(0,yp,0)

d
Approach:  dE =L2er
471'807’

* Charge element: dQ = p, dz
* Symmetry = y-component only !!
e,. e, =cos o

E:jdEy = T pl-dZ2 cosa
—o0 7Z€OI"

r, e, and o are f(z) : 27%€,yp

r=\/yP2+z2 ;cosa'zy—lD

r

Conclusion: E radial symmetry

Electrostatics

Thin plate , p, [C/m?]

(1) ’ =dA =dx.dy, at (x,y)
dQ =p, dA =p, dx.dy
dE=dE e .+ dE e+ dE e,
if plate o large : dE // e,

(2) if pg=f(x) only:
Use result for « long wire:

dE = _ap dE in XZ-plane
27y zp

with d p, = p,. dx

25



Electrostatics

Point charge: E = L—}%, V/m

47 R?

Infinite uniform line charge:

Electric Flux & : definition

1. Homogeneous vector field E

A J/
A/ [——

/| I\ e .
Ae I "
. e, — / >(<9
| E
Al
A\

O=<, £)=0 0 =90° d=EAcos0

Def.: ® =c.AE d=0

Choice: c= 1 ®=(Ee,)A

2. General vector field E For small surface elements dA:

A and e, are constant

q)zﬂi-encm:ﬂidﬁ
S S




Electrostatics
Gauss’ Law (1): derivation Charge Q'in O

-0

~~ Flux & through sphere A:

P =(ﬁ>E-dA= ——e e dA
E E o 471:5‘0;’2 £

dA’ = Q 2.1.471'R2:Q

47me R 2

Flux ®;’ through surface A’:

g o 0 .
D, —c.g)E dA _SEJVSM%WZ e, e, dA

:@Q cosﬁ.dA’: Qﬁzg
Wame, r? Warme R g,
06)) :Q Result is independent of the
1 & shape of the surface !!!
Electrostatics
Gauss’ Law (1): continuation
Flux: &, _Q
€

The total flux through a closed surface is equal to the
enclosed divided by the vacuum permittivity.

Consequences:
Result is independent of

the shape of the surface * O needs not to be in O

* charge outside: no net flux
* more charges in A:

e = Z Dg;

l

27



Electrostatics

How do we use the Gauss’ theorem for:

* Find the E-field

— if we know the charge distribution and

— it has enough symmetry to let us evaluate the integral.
* Find the charge distribution:

— charges on conducting spheres,

— charge within a given volume.

Electrostatics

Calculating the E-field from Gauss's Law

e First , the Gaussian surface to whose area vector is
parallel to the E-field;

 EdA = Eda
* Also ensure that on the surface the magnitude of of the E-field is
constant.

§EdA =E§ dA = EA

* Use geometry to evaluate A.

* Gauss's law then relates E to the charge inside the surface.

28



Electrostatics
Calculating the E-field from Gauss's Law
More Generally

* Use the symmetry of the charge distribution to determine the
pattern of the field lines.

e Choose a Gaussian surface so that E is parallel to A, or can
sensibly be divided into parallel and perpendicular components,

since.
E _A=0

perp”

* If Eis parallel to A, make sure that E is constant over the area.

Electrostatics

Electric field computation using the Gauss Law

Algorithm of computation:

e Analysis and symmetry
* Approach to solution
* Calculations

29



Electrostatics

'Basic symmetries for Gauss’ Law
oo extending plane | oo long cylinder
Gauss “pill box” Gauss cylinder, Gauss sphere,
Height—0 Radiusr (r<Ror r>R),|] Radiusr(r< Rorr>R).
' length L
Electrostatics

Gauss’ Law for a long straight line of charge (linear distribution)

Available:

Infinitely long straight line, carrying
charge density p, [C/m]

p; [C/m]

30



Electrostatics

Gauss’ Law for a long straight line of charge (linear distribution)

Analysis and Symmetry
L

1. Infinitely long line.

2. Charge distribution: homogeneous.
p,; [C/m].
3. Cylinder symmetry.

Consequences:
The Gauss imaginary box:
a coaxial cylinder of radius R,
length L.

Imaginary Gaussian surface

Electrostatics

Approach to solution and computation

B Q\
\ Gauss’ Law: IE°dA D -
> 0

Due to the symmetry on the
Gauss box:

E normal and constant to surface A,

E parallel to surfaces A; and A;

®, = [E-dA= [ E-dA+ [ Edi+ [ EedA
)y

Al A3 Ay
— — —
Front Back Side

31



Electrostatics

Computation

E«dA=0 J‘E.dAZJ.E'dA E«dA=0

Ay Ay

Due to the symmetry E constant on A, ﬂ

<I>E=IE-dAzE-J.dAzE-AzzE-Z-fr-R-L

A A

Lateral area of cylinder

Electrostatics
Computation

The total enclosed charge by the Gaussian surface is only the

segment of the line within the bounds of the front and back surfaces.

p; [C/m]

;

Q(enclosed)=p,-L

c1>E=I E-d_A’=8Q
0

%

®,=E-2-7-R-L

=

—_—

E P

<
Il

= ; Pi B Important !!
ER o - R 2-w-&'R R

32



Electrostatics

Gauss’ Law for an infinite flat surface with charge distribution

Available:

Infinitely flat charge distribution,
carrying charge density p, [C/m?]

py [C/m?]

Electrostatics

Gauss’ Law for an infinite flat surface with charge distribution

Analysis and Symmetry

1. Infinite flat surface.

2. Charge distribution: homogeneous. p, [C/m?].

3. Plan parallel symmetry.
The electric field is uniform and normal to the flat surface.

Consequences:
The Gauss imaginary box a cylindrical surface with the top
and bottom surfaces parallel to the charged plane

33



Electrostatics

Approach to solution and computation

~ — Y
E Gauss’ Law: .[E°dA D :

Due to the symmetry
on the £ Gauss box:

E parallel to surface A,

) E normal and constant to surfaces
A, and A,

P, = l EedA = Jl EdA+ [ E-dA+ | E-dA

A Ay
Electrostatics
Computation
®, = [EedA= [ E-dA+ [ E-di+ | E-d
by A A3 A

jE-dA:jE-dA jE-dA:jE-dA

Al A A3 A3

Due to the symmetry E constant on A, and A, ﬂ

D, =jE-dA+jE-dA=E-IdA+E-jdA=2-E-A

A A3 A A3

Top or bottom area of
cylinder

34



Electrostatics

Computation

The total enclosed charge by the Gaussian surface is only the charge
he disk ai ithin the cyli . en A=A —
on the disk contained within the cylinder Area A=A,=A,

4

9

Q(enclosed)=p, - A
®,=2.E-A

Uniform field
Important !!

2-80.

Electrostatics

Electric Field for uniformly charged parallel plate capacitor

In this example we will make use of the result
Charged surface obtained from the infinite charged flat surface
/ \ in order to determine the electric field inside
+ Pg — Py and outside a parallel plate capacitor.
The plane of the plates are taken to extend to
infinity. This is usually a good approximation
+Q -0

when the plate separation is small compared to
their area.

Area of plates A

35



Electrostatics

Electric Field for uniformly charged parallel plate capacitor

PLATE (1) @) For a point P between plates
+ Ps —Ps By superposition:
E E=E +E,
—_—
P \
E, E= 0 " 0 iy
2¢ A 2¢ A
+0 - -
/ g”A 8{)
0=pA
Electrostatics

Electric Field for uniformly charged parallel plate capacitor

PLATE (1) () For a point P to the left of both plates
+ Ps —Ps By superposition:

E, E=E +E,
P .

EZ E‘ = _& + i . 1;

2¢ A 2¢ A
+0 0 _ .
/ E=0 On Left side
0=pA

36



Electrostatics

Electric Field for uniformly charged parallel plate capacitor

_ 0 -
E=—=.u
) PLATE (1) €A 2)
E=0
+ ps _ . - ps —
E === u E = 0
£, -
E, E L
P s P s P —
E, E, E,
+Q -0
Electrostatics

Electric Field for uniformly charged parallel plate capacitor

Ideal infinite parallel plate capacitor Real finite parallel plate capacitor

37



Electrostatics

Electric Potential

e The electric potential definition

e Potential due to a continuous distribution of
charges

e Calculating the electric field from the
potential

Electrostatics

Electric Potential

When a test charge Ag moves from A to P (named origin of potential) in
a region of electric field E the field does work on the charge. For an
infinitesimal displacement ds the work done by the field is:

P_, P — . P__
LAP:I F-ds:I Aq-EV-ds=AqI E -ds
A A

A

A‘\ F v

Aq

Pﬁ —
VA:E:I Ev‘ds
Agq A

38



Electrostatics

Electric Potential

For V, to be meaningful we must define where the electric potential is
zero in P. This can be chosen arbitrarily, and common choices are the
earth (ground) or at an infinite distance from the sources of the electric
field (only valid if the source is located on a finite domain).

Properties of the electric potential

* electric potential does not depend on the chosen path of integration.
* electrostatic field is a conservative field !!!!

* Sl units of electric potential:

L

V,=—2 Units are J/C Volts (V)
Aq

Electrostatics

The electric potential difference

The potential difference U, = V;- V, between two points A and B is then:

P . P . P N B N B -
Uy =V,~V,=|E, -d5-[E, -d5=(E, d5+[E, -ds=E, d5
A B A P A
Since the electric force is conservative, the Ar
electric potential difference does not . \ E
depend on the integration path, but on the y ‘ids
initial and final points. Do not dependent /_ds

on the origin of potential. /k— P
B

If we considered a closed curve then:

_ - . New units for electric field from
Ur=QE, ds=0| |g_(v,-v,)s uniform field, so E has units of V/m
r Note: 1 N/C=1 V/m

39



Electrostatics

Equipotential surfaces and equipotential lines

B
V,-V, = J' = Eg’ Equipotential points: points where V, = V.
A

B
[£-@-0 ‘ = T
A

Any surface, planar or curved, over which the potential is constant is
called an equipotential surface. The equipotential surface may or may
not coincide with a physical surface.

Electrostatics

Equipotential surfaces and equipotential lines

7%

L — E,
E,-ds=0 ds E _ ~ perpendicular
— > Y s

Equipotential lines

Collection of all points at same potential form a line in a 2-D view.

Equipotential surface

Collection of all points at — —-

same potential forms a surface
in a 3-D view. p— g E,

I

40



Electrostatics

Equipotential lines equation: Electric field lines equation:
Equipotential lines are orthogonal to the electric field lines !!!

Example

Equipotential, E field

Electrostatics

Potential for point charges

For a collection of point charges the electric potential is found using the
superposition principle:

v=>V

Since Vis a scalar it is much easier to evaluate than the vector electric
field E,.

Unsolved question:

If we know V how it is possible to find E?

41



Electrostatics

Electric potential for a single point charges

o 1 Qo r
P v

It is customary to choose the potential
to be zero at r,, = co.

ji E d; _
ror | Vis constant on spherical
0 A
surfaces centered on the
1 point charge.
rA
Electrostatics

Electric potential for a single point charges

Equipotential, E lines

42



Electrostatics

Potential produced by a continuous
distribution of charge

In the case of a continuous distribution of
charge we first divide the distribution up into
dv=dx dy dz ge b 10
small pieces, and then we sum the contribution,
to the electric potential, from each piece:

av, -9 4
4re, r

L [
47125‘0v r

Volume - v

Electrostatics

Potential produced by a continuous
distribution of charges

_ 1 fA - 1 [p
Volume charges dQ = p, -dv|Va= pr= IT dv| |Ea= I—
Vv

__ 1L faA n -
Surface charges dQ = p, - dA |Va = Az, ITdA e J.&fdA
S
S

1 P = 1
_ V. = Ly} A i
Line charges dQ=p,-dl 4 471'80.[ POl | Ea= _[ r2l
) S

43



Electrostatics

Field and electric potential

P(fiy __
V, (x,y,2)= E -ds

A(x,y,2)

dvV, (x,y,2)=—Ev-ds=—(E, -i+E, - j+E, -k)-(dx-i+dy- j+dz-k)

v, (x,y,2)=-E, -dx—E, -dy-E, -dz

But:
oV oV aV

dv, (x,y,z)=—a—-dx——-dy——-dz

X dy 0z

£ :_B_V; £ BV; _ oV
" ox Y dy " 0z

Electrostatics

Field and electric potential

V. _ V.

va: e w N vz N
ox ’ dy 07
:__.f_a_v.}'_a—v-];:—VV:—gradV
dy 0z

Important !!
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Electrostatics

Laplace and Poisson equations

JEV-dZ:—Z T
80 JE dA= —J.p -dv

1

z Vs

IEV dA= JleE dv-—jp -dv

Electrostatics

Laplace and Poisson equations

J.Ev dA= jdlvE dv——J‘p -dv

E

E. = —gradV

div(—gradV) = Py

N
80

divE, = Py
80

Free space — Laplace equation

pV:O

Materials — Poisson equation

P, #0
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Electrostatics
Poisson/Laplace in 3 D

Spatial charge density: p, =f (X,y,z)

Boundary conditions:

V., V,

Z

and V; = f (x,y,z) Potential V=1 (x,y,z) ?
) 0 P
—t V(x,y,2)=—=

{8}3 dy’ azz} (.2.2) &

0

Solution of Laplace/Poisson will
depend on boundaries.

Electrostatics
Poisson/Laplace in 3 D

Special case 1: Cylindrical geometry

19( o 1 9° 9° Yol
vy =| -2 2] Ly =B
[r ar(rar\J r’ 06’ azz} &

If r — dependence only:

p, and boundaries will be f (7).

Thus: V will be f (r) only

Example: V=V, atr,and V, atr,, and p,=0

ld( dV) dv dv
——|r— =0 == r—=¢c => —=

<
rdr\ dr . 7
V(r)=cInr+c' (cand ¢': const.)
With boundaries: V(r)=V,+(V, -V, )w
Inr, —Inr,
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Electrostatics

Conductors in electrostatic field

* a conductor can conduct, or convey, electric charge.

e in static situations a conductor is a medium in which the internal electric
field is always zero.

* it follows that all parts of the conductor are at the same potential.

V Constant on conductor

{e} Free charges conductor

Electrostatics

Conductors in electrostatic field

Consider the conductor placed in an external electric field Eex

Timet=0 . Eex

Fe—cE.

A very short time after Eex is applied charge redistribution stops.

. Eex
Timet >0

7 N
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Electrostatics

Conductors in electrostatic field

The separation of charge produces an internal electric field E, to the
conductor

E.

1

Redistribution of charge continues until
the internal electric field magnitude
equals that of the applied electric field.

EEX

E

Enet = Eex + Ei Inside conductor the net electric
A field is zero after charge
En: =0 redistribution

Time t = 1019 s

Electrostatics

Conductors in electrostatic field

Surface charge density pg

Gaussian surface, Area A

Gauss’s Law

E-A:pSA 2~

80 If E = constant, O constant !!
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Electrostatics

Conductors in electrostatic field

Consider a spherical conducting shell. What is the electric field in the inside
of the shell when an external electric field is applied to the shell and all
charges have been redistributed? A
Assume that Einsize 0 after charge
redistribution has occurred.

A
.
v E :
R —

o @

q}g.dszcﬁi.d;+qsfinside.d;=o —
T

I, Ty
0since E=0 Only way to get O for all paths I, is to have Einside =0
Electrostatics
The electric dipole

—~

. Dipole moment of selected

. 1 molecules

H,70" =6.1x107"Cm
H™CI? =3.4x107Cm
NTH,"” =5.0x107°Cm

The dipole we know water
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Electrostatics

The electric dipole

An electric dipole is formed by two equal but opposite
polarity charges, which are in close proximity.

A dipole is characterized by its electric dipole moment:

= = -Q p Q
p=0:1 ,C-m m - O
o
Electrostatics
The electric dipole

‘ Thus, the potential of an electric dipole is: ‘ V. =~ Qlcos8 ~
Y Amert dmer’

‘ Note: the potential V drops off as 1/r? for a dipole ‘

Using the expression for the gradient in spherical coordinates (due to the
symmetry), the electric field vector is obtained:

E=—gradVA =—grad p-r3 = ol
4reyr 4re,r

s (ZCOSH'I:;R +sin9-ﬁa)

Note: the electric field of a dipole decrease with distance as 1/r3 ‘
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Electrostatics

The electric dipole

z . . . ‘
. _\{ECIUIPOtentlal lines

Electric field lines

ok = l e " -
V, = & E= 0 3(200s9-u1e+szn9-u9)
472'80r 3 471'807‘

Electrostatics

The electric dipole

The dipole in an external electric field

Q —

/‘ -

F‘;,;/\'a' E
-Q

The dipole tends to rotate so that its moment aligns with the external field.

m:ZXF:iX(E‘Q):(i-Q)XE:;XE‘ =>m=p-E -sinat, Nm

This, the electric dipole moment is the torque experienced by the dipole in
an external field of unit intensity and direction orthogonal to the dipole
length.
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Electrostatics

Dielectric materials and polarization

Dielectrics have very low (negligible) DC conductivity.
Their charges are not mobile, they are strongly bound to
the atoms. Such charge is called bound charge, as opposed
to the free charge in conductors.

External electric fields influence the dielectric atoms and
molecules despite the fact that their charges are more or
less fixed. Microscopic displacement of the centre of the
electron cloud makes the atom look like a dipole.

Electrostatics

Dielectric materials and polarization

The above examples illustrates the so called electronic polarization, which
occurs in dielectrics whose atoms and molecules are originally neutral.
The process of polarization is balanced by the Coulomb attractive force.

Ionic polarization occurs in molecules consisting of positively and negatively
charged ions, which are originally mixed and have zero net charge.

Orientational polarization occurs in materials, which consist of sub-domains
with permanent microscopic separation of charges (electrets, polar liquids,
etc.)

Each microscopic polarized region is characterized by its dipole moment:

p=0l
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Electrostatics

Dielectric materials and polarization

\\ Thermal  agitation  randomizes  the

molecules orientations. The average value
of the dipole moments taken over any

. . volume is zero: Z p,=0

No external electric field applied

An external electric field produces a torque

.. on each of the dipole moments aligning
4D

them with the electric field lines.
o 5
D # 0
4o — Z
2 _ External electric field applied
a® |

000 00N

Electrostatics

Dielectric materials and polarization

To quantify the polarization effect on a macroscopic level, the
polarization vector P as the dipole moment per unit volume is defined:

i .

P = lim — =—L c/m’ P
Av—0 Av dv
dp=P-dv

If a piece of dielectric is immersed in
external electric field, the dipoles will
align (more or less) with the field. dv

e

The internal charges will compensate each other but uncompensated
surface charges will appear at both sides of the dielectric.
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Electrostatics

Dielectric materials and polarization

e W _go =2 _
| S cal T
o P-dA-l-cosa
=—=P-cosa-dA
\ 7 l
[\ 44 ———
/ \ —-dQ,=P-dA

Closed surface 7\) E

—-dQ, dv LY
! The polarization charges for

the entry closed surface is:
Ou=fpr, w=—(pPii gy 0.--{pP-da
Ve b b

Equivalent polarization volume charge distributions

Electrostatics

Dielectric materials and polarization
Thus, the polarization volume charge density is:

Q= Cﬁ} P, dv= —(J-:j.:ﬁ divP-dv |:> P, = —divP
Vs Ve

The polarization surface charge density will be: |:> p,, =—divs P
Where:

P, = —divsﬁ = —1212 . (ﬁz —ﬁl) = 17!12 -P

4 P,=0 (in vacumm)

dielectric

—

ni12 is the unit vector to the interface

P =P (in dielectric)
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Electrostatics

Electric field in dielectric materials

We now recognize two types of charges: free charges (in conductors) and
bound charges (in dielectrics). The bound charges represents the behavior
of the dielectrics atoms/molecule in vacuum.

We apply Gauss law for the electric flux density in vacuum in the presence
of both types of charges:

@E,dzfoﬁsz but: Q,,z=—<ﬁﬁP-dA
) 80

i :

@Edz: sz_c_g)ﬁdz |:> go.{(.g)E-dZ}+q§J.)?’-dZ=Qﬁ

Electrostatics

Electric field in dielectric materials

80-{4;{)E-dﬁ}+if>l3d2:Qﬂ - <ﬂ>(80f+7’)-d71=gﬂ

L
z z

Now we can define a vector, which depends on the free source charges
only, and has nothing to do with the properties of medium:

D=¢, E+P, |[D],=1C/tm’| ) {pD-di-0,
P

called electric flux density or electric displacement.

In an arbitrary medium (other that the vacuum) the electrostatic field is
completely defined using 2 vector fields:

D E
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Electrostatics

Laws of electrostatics

The electric flux law
(generalization of the Gauss law valid only in vacuum)

Definition:
The total flux of the electric flux vector through a closed surface is equal
to the enclosed by the surface.

(ﬁﬁ D-dA= O Integral form of the law

I VZ
Py = divD Differential form of the law
Electrostatics

Laws of electrostatics

The polarization law

From experimental studies, it is found that the polarization vector (the
temporary component) is strongly related to the electric vector field. For
most common dielectrics, these two vectors are collinear and proportional
for a wide range of values of E (linear materials).

Ft =7, &, .E| Valid just for linear materials

where: X is the electric susceptibility of the material.

In this case using the relation between E, D and F, we will have:
D=¢,-E+P=¢,-E+¢&,-7,-E=¢,-(1+2,)-E

&

r

D=¢E Relative permitivity
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Electrostatics

Laws of electrostatics

The polarization law

The dielectric constant €, is not really a constant. It may depend on
frequency or on the field intensity. It is also called relative dielectric
permittivity.

When the dielectric permittivity depends on the electric field E, it is said
that the medium is nonlinear, because all the field relations become
nonlinear equations.

When the dielectric permittivity depends on the position in the volume of
the dielectric body € (X, Y, Z) it is said that the problem is inhomogeneous,
as opposed to the homogeneous case when the properties of the material are

constant throughout the volume.
Moreover, the dielectric properties may depend on the direction of the

applied field because of certain properties of crystal lattices, etc. This is
called anisotropy of the dielectric material.

Electrostatics

Laws of electrostatics

The polarization law

Then, the relation between the electric flux density vector and the electric
field vector is a tensor one:
D E. €, E_||E

X xx Xy b4 X

E |:> Dy =€ €y &y Ey

D | | € €_||E

z 2x 2y 2z z

—

D=

M |l

Fortunately, it is often suffices to assume that the medium is homogeneous,
linear and isotropic. This is the simplest possible case.

Final note on the physical meaning of the relative dielectric permittivity: it
shows how many times the electric field force is decreased in the volume
of the dielectric due to the cancellation effect of the polarized microscopic

dipoles. o o
In general the polarization vector consist in 2 components:

Note: - a temporary component (P,) and a permanent one (P,)
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Electrostatics

Laws of electrostatics

The relation between D, E and P vectors

The vector sum between polarizations (both components) and the
electrical field intensity, multiplied with the permitivity of the vacuum,
is equal, at any moment and point, with the electrical flux density:

D=¢, E+P+P,

D=¢, E+

Jol

D=¢E

For materials with anisotropy and without permanent polarization:

'E

ol

D=

Electrostatics

Boundary conditions in electrostatics

Most practical problems involve more than two regions of different
electric properties. The neighboring regions are separated by surface
called boundaries (also interfaces). The field behavior at these
boundaries is described by certain equations: the boundary conditions.

These equations are derived from the , which are

. The boundary conditions are essential to the solution
of any electrostatic field problem. These problems would have a unique
solution only it its boundary conditions are specified.

The boundary conditions of the tangential to the interface field components

=(2)

E'(EZ E AS
- B region 2
L [ g
& ahitl, e
) Z() 2 - £
Eﬂ' =iy ET Tl 1
I region 1
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Electrostatics

Boundary conditions in electrostatics

ZX[E(Z) _E“’}o

The tangential to the interface components of the electric field vector ' '

are continuous across the material interface.

n_(D(Z)_D(l)):pS

J

g-EY—g - EV=p| !

At dielectric interface, if there is not free surface charge, then the normal

Sflux density will be continuous across the surface.

Electrostatics

Boundary conditions in electrostatics

" n |:> EW g The normal electric field is
[ | . . . .
o - discontinues across dielectric

interface.
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Electrostatics

Boundary conditions in electrostatics
At dielectric interface, the normal flux density and the tangential electric
field are continuous. This would cause the electric field vector to change
its direction abruptly (ONLY for surfaces without charge distributions):

EV=EP ) EY . sina, = E® -sina,

2 7

& -E,(ll) =&, -E,(,z) E> £ EW cosay = ez‘E(z) “cos &,

U

tana, g
tana, &,

Very important !!

Electrostatics

Capacitance

Capacitance is a property of a geometric configuration, usually two
conducting objects separated by an insulating medium.

The system of two conductors, each carrying equal charge is known as a
capacitor.

Capacitance is a measure of how much charge a particular configuration is
able to retain when a battery of U volts is connected and then removed.
The amount of charge Q deposited on each conductor will be proportional

to the voltage U of the battery and some constant C, called the capacitance.

By definition:
E lines J

0 v 22
A U
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Electrostatics

Capacitance

A general expression for the capacitance in terms of the E vector:

[[D-dA
cC=%-x*
U Ea
A
[[E-dA
C=&fp
'[ E-ds
A
Electrostatics
Capacitance

If the capacitor is given, with a homogeneous dielectric, its
capacitance is a function of the geometrical dimensions, which
characterizes the shape, and the relative position of the plates and is
direct proportional with the dielectric permitivity:

C=¢f(8,88,)

In the case of non-homogeneous dielectric media, the permitivity of
the dielectric is different, and the capacitance is a function of the
following form:

C=f(&,6,.6,,8,,8r8,)
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Electrostatics

Calculation of the capacitance

Algorithm of the capacitance computation:

* Suppose the two conductors charged
* Compute the electric field intensity
* Compute the electric voltage between the two conductors

Electrostatics

Capacitance of spherical capacitor

1. Supposed the conductors charged with Q and -Q
2. Apply the flux law.

ﬁﬁ-dﬁz”D~dA=D-”dA=4~ﬂ~r2-D=Q
e‘ I : :

0

D=¢E s ———
4-m-e-r

2 2 r r
UAszf.dgsz.dsz 0 —-dr= Y d_:= o (1 1
/ 4-7-€-r 4-r-edr 4-mw-e\n r

i &

ng C=4-7L’-€-r1-r2

)
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Electrostatics

If: r,—oo C=4-7w-€n
Capacitance of parallel plates

The electric field inside the parallel plates:

8 — Upp —

E E:&
£
y g O
p _Q A-¢g
A
A
2 2 2 d
Uup=[E-ds=[E-ds=t- [ds=E-a=22
A€
D — 1 1 1
d .
AB d
Electrostatics

Capacitance of cylindrical capacitor

Cross-section: Prove that:

R
1 b

In—
a

C




Electrostatics

Electrostatic field energy

In order to establish an electrical field in a space domain where this is
initially null, it is necessary to move electrical charges from infinite to the
bodies. The electrical field energy is equal to the total mechanical work
needed to transport these charges.

In order to define the energy in such a way, some hypotheses have to be
made:

the storage of the charges on the conductors is made very slowly, in
order to consider the field as being electrostatic and so that we don’t have
irreversible transformations of the mechanical work done in heat.

consider that the conductive system is immobile, such that we don’t lose
mechanical work to deform or move the conductors.

Electrostatics

Electrostatic field energy

Suppose n spherical conductors and the following additional assumptions:

All conductors are in the initial state without charges:

0,=0
V=0

vV i=12..,n

The final state of the conductors will be:

Q1’Q2, -------- Qi""'Qn
VVyV, W,

Q.
[
S

W (=12 .51

s}
Il
RN
=<
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Electrostatics

Electrostatic field energy

1 n
W =_.ZV<- :
e 2 — i Ql

The above relation gives us the expression of the energy stored in the
electrical field of some conductors that have the charges and potentials

Electrostatics
0 0 Electrostatic field energy
+ -
Consider a capacitor at potential difference U,, and
&€ of charges +Q , -Q on the plates. Area of plates (A)
and spacing (d).
1 N 1 1 1
W=m D Vo0 =2 % 0-oVeQ=—Up Q
2 & 2 2 2
_Q _¢£A 1 1
S U, _7 W, =E'U12 QZE'C U212
v,
U,=E-d
U
412

4 :l(ﬂj .(E.d)z :l.g.A.d.Ez :l.g.V.Ez
2\ d 2 2

‘V is the volume between plates and NOT potential\
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Electrostatics

Electrostatic field energy

w, =We =l-€-E2 =l-£~E-E:l~D-E
Vv 2 2 2

This relation is in opposite with the first one for the electrostatic field
energy (which expresses the energy with respect to the potentials and
charges and does not specify where it is located - on the conductors or
inside the dielectric). w, is called as electrostatic energy density.

In, general: w, :lﬁf

The total electrical field energy is: W, = J’J’ — :%J‘J‘J‘B'E'd"m!

Conclusion: v

not inside conductive bodies
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