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Electrokinetic fields
Introduction

So far we have been discussing static electricity. The charges have not been
moving. Now we want to see what happens when charges move. We are
thus going to consider conductors, rather than insulators (in which charges
cannot move). The idea of a charge in motion brings us immediately to the
concept of and magnetic fields. In this chapter we deal
with some aspects of

This branch of electromagnetism is known as:

Since we are considering moving charges we are no longer in electrostatic
equilibrium, so the properties of conductors we say before no longer apply.
In particular, when charges are moving the total electric field inside a
conductor is no longer zero:

E + Eexternat #0

Note: if a charge undergoes an acceleration it creates electromagnetic waves.
This is the topic of the next chapters on electromagnetic fields.

Electrokinetic fields

Electric current

[f'the sources producing ESF are in physical contact with a
metallic body, the electrons will immediately try to discharge
them until there is no field inside the conductor. This would be
exactly the case if the source is unable to provide continuously
more and more charge through some mechanism for charge
transfer.




Electrokinetic fields
Electric current

If such a mechanism is provided, then a coordinated steady movement of
charges occurs, which is called electric conductive current, or simply

current i (A).
The total amount of charges moving through a given cross section per unit

time is the current, usually denoted by i:

i:O(lj_?, [i],, :11£:1A(Amper)
Conductor > v

a o e —y

cross-sectional area A
vdt
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Electric current

If we consider the current per unit cross-sectional area, we get a value which
can be defined in any point in space as a vector, typically denoted J , called
conductive current density:

Al - di - 1A
no =

where n is the normal direction of the plane.

through the end face can be obtained from the current
density as an integration over the cross-sectional area of the conducting

medium. _
iszdA

A
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Electric current

For the potential to rise along the direction of the current, there must be a
source which to electrical energy.
Examples of such sources are:

» Batteries

» Thermocouples
* Photo-voltaic cells, etc.

In this case, inside the conductor the electrostatic equilibrium condition is
not any more valid:

E‘l‘Eemf —750

Where;:
E is the electric field;

Eens IS the electric field established by the energy conversion.

Electrokinetic fields

Electric current

A steady state current flow requires a closed circuit. If we integrate along a
closed circuit the above mentioned relation we will have:

e, :<ﬁﬁemf.d§¢o (j)E-dgzo

c_~ C

Define the electromotiveforce (emf) or “voltage” of the battery as e,

Electric fields produces by stationary charges are . Thus, they
cannot by themselves maintain a steady current flow.

Note: until now we have discussed just about steady state conductive currents.

Additional with this current exist also a so called convection current.
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Convection electrical current

The conduction electrical current has another property: it always passes
through a conductive medium and the movement of the electrically charged
particles is a relative movement with respect to the body.

If the electrical charge is transported directly by masses charges with
electricity, an electrical current appears, in balance on these masses, called
convection electrical current.

conductor or insulator
Py

The convection current density is defined as:|J. = p, -V

and the corresponding total current is e = J‘Jc dA
A
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Ohm’s law

From experimental studies, it is found that the conductive current density
vector is strongly related to the electric vector field. For most common
conductors, these two vectors are collinear and proportional for a wide
range of values of E (linear materials).

— — Valid for linear materials without
The 15t local form: — . L
J=0o-E external electric field!!

Where O is the conductivity of the conductors.

nd = 1 = - Valid for linear materials
The 2" local form: |E = ; J= P J without external electric field!!

1

Where 0 s the resistivity of the conductors. pP=—
o
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Ohm’s law

= = = Valid for linear materials with
The 3 local form: =p- o
E+Eent =p-J external electric field!!

—_—

The 4t local form: |J = O'-(E + Eent ) Valid for linear materials

with external electric field!!

The integral form of Ohm’s law.

Consider a piece of homogenous material of conductivity o, length | and
uniform cross section A, as shown below. Within the conductor J, E and
Eems are in the direction of current flow i.

1 Eemf 2 C
Et+Em=pJ =0
E,J,ds i
|
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Ohm’s law

The integral of the local form of Ohm’s law along line C between the two
end points (1) and (2) will be (note all the vectors are collinear):

(2) (2)

[ (E+Eu)ds= [ (-3)-a8

® ®

2 2) (2)
I(E+Eemf )‘dS: j E'dS‘i‘jEemf 'dS=U12+612
@ @ @

U, The electric voltage between the two end points 1 and 2
©2  The electromotive voltage between the two end points 1 and 2
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Ohm’s law

It is supposed that the current density is uniform over the cross section of
the conductorl

(2) (2)

I(P-j).dgzj(p.%j.dszi_]ap-T(B

(Y @) @

R,, is the resistance of the conductor between (1) and (2) R _J'p-dS
, =

If, the cross section is constant along the whole line O A
then the resistance between the two points (1) and (2)
will be: (2) q @) |
p-ds_p J‘ Js i
] - = S ——
i .[ A A A
@ @)
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The integral form of Ohm’s law.

U, +€, = R12'i
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Charges conservation law (continuity law)

A fundamental law of physics is that charge can either be created nor
destroyed. At the most, charges can be moved from one place to another
by currents.

A current outflow from a volume inevitably means that charges decreases
in this volume. A current flow into a volume implies that the enclosed
amount of charges increases.

This is represented by the so-called continuity of current law (or charges
conservation law). In integral form it is:

Electrokinetic fields
Law of conservation of charges / %
J permsie,,
Integral form LN 7
S, o 0 '::/A

i--9°_ 394 RN,

at 3 3 / J
d - = . =
:—a p,-adv|=qDJ-dA= divJ -dv
Vs b Vy

Very important remark: when in the expression of an EM law in the
integral form there is a derivative of an integral over a volume (or surface
or line) there are two different possibilities:

The volume, surface or line are mobile with the velocity v = cst.




Electrokinetic fields

Law of conservation of charges
Suppose that the volume V is mobile with the velocity v, then the derivative
with respect the time of the volume integral will be:

((:t C‘ﬁ‘:j)pv -dv —q.ij) Pu dv+<ﬁﬁpv v-dA

The volume is immobile The volume is mobile

In this case the local form of the continuity law will be:

chJSJ dA= ﬂij}dle dv——— ﬁjspv-dv :—ﬁ%.dv— p,V-dA
Vs z
op.
@J dA+<_ﬁ>pV v-dA= <Ji:‘;6 . dv
ot
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Law of conservation of charges

- -~ 0p
J-dA+ v-dA= J+ dA=— ——.dv
fpo-anspo.i-aR-dp(a-p-i) ai-ffpL
z z z

Vs

J.=p,-V, (convection current density)

J, (conduction current density)

Sﬁﬁ(mm).dz\:_ﬁg&%.dv

ot

(J‘:j‘) dA JJ dlv dv_—@;%-dv
ot

Vs

e 0
dIV(J + \Jc): _Sia General local form of the continuity law
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Law of conservation of charges
This is the local form of the law of conservation

apv of charges. It shows that the sources of
at convection and conduction current densities are

div(3+3c)=—

points, at which the amount of

1) Particular case. The volume is immobile

—

Jc:O

This is the continuity law in differential form for
immobile structures.

divJ __%
ot

Electrokinetic fields

2) Particular case. The volume is immobile and we are in steady
case

Here, we consider steady currents. In this case, the charge moves steadily

(in average) and its density at a given point does not change in time.

Therefore, 0
Py

t —0=div] =0

II divj-dv=<‘f_'j‘>3-dﬁzo
Vy s
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Assume now the the integration is carried
out over a volume of a node of wires. The
currents are confined within the wires, so
the surface integral is actually the sum of
the integrals over the cross-sections of the
individual wires.

qﬁj’;j.dx:Hj.dmﬁj.dm“j.dz\:o
z S; S, S3

=+, +1,=0]

This is exactly Kirchhoff’s current law
in circuit theory whose general form is:

:Zln=0

Electrokinetic fields

Resistance  Here we present the general expression for
obtaining the electrical resistance of an object.
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Resistance
A general expression for the resistance in terms of the E vector:
2 . _ 2 . _
[E-ds [E-ds
&_:Jﬁgszzggztzéﬁggjgf: 10-~
i J[J-dA o [[E-dA 1A
z z

Be aware that the point (1) must be a point on the electrode of higher
potential, and (2) is on the electrode of lower potential:

i JJE-dA 1A
G,=— =02 ——, 1S=""=10"
U12 IEdg i\
1
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Resistance
The analogy between the conductance and the capacitance is obvious:
E-dA . E-dA
o ! 1
C == - G = — =

U

u 75
E.ds jE-ds
1

P — N

Assume that there are two structures with exactly the same shape of the
electrodes. The difference is that the region separating the electrodes is a
dielectric in the first case, and a conductor in the second case. The ration
of the capacitance and conductance is:

C_¢
G o
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Resistance

The above formula is very convenient to find the resistance (or the
conductance) of a structure, for which we already calculated the capacitance.

Example: the conductance of a parallel-plate structure is:

d

_¢&-A _
Ao’

d

F G:"O'lA, o R

C Q

Where, A is the area of the plate (or the cross-section of the resistive rod)
and d is the separation distance (or the length of the resistive rod)

Electrokinetic fields

Resistance

The expression for the resistance between the inner and outer cylindrical
shells shown in the figure is:

C:2-7r-rg-L
In-&
ra
G- 2 ﬁ-l?'-L
Int
I
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Analogy between the electrostatic field and electrokinetic field

B B
UAB:IE'dg UABZJ‘E-dg
A A
ab=p) [pD-dA=0u|  |pI-aA=i |aivi- P
z >
di,D=n-(5:-Di)=p)  |divgd=n-(3.—T:) =L

D=¢E| [d=0-E|

—

D:g-E+Fp \]=O"E+O"Eemf

Electrokinetic fields

Analogy between the electrostatic field and electrokinetic field

UAB<::>uAB
E<E
Dol
Qei
ES o

Py < 0 -Eent
CeG

The analogy is very useful for many practical problems. The electrostatic
problems are usually more easier to be solved in comparison with the
equivalent electrokinetic problems.
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Power density and Joule’s law

Consider an infinitesimal volume dv of a dv

resistive material

The work done by the electric field to

move an infinitesimal charge dQ from one

end to the other is: ds dA

d2W =dV -dQ=(E-d§)~dQ, Joule

The power
required for this charge transfer is:

dw (E-ds)-dQ
dt dt

dP =

=(E-ds)-i=(E-ds)-(3-dA

Electrokinetic fields

Power density and Joule’s law

The power needed to move the charges in the infinitesimal volume dv can
be also written as:

dP =(E-ds)-(J-dA)=(E-J)-ds-dA=(E-J)-dv
The power density is defined as the power per unit volume spent by the
electric field in moving the charges across it:

P = =

p=—=E-J=0-J°=p-E* W/m’

dv
Joule’s law states that for a given volume V; the total electric power used
to move charges in the whole conductor, converted into heat is:

P:j‘\{jp-dV:J‘\;‘;J‘(E-j)-dv, w
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Power density and Joule’s law

In a conductor of uniform cross section dv = dAds, with ds measured in the
direction of J. The above equation becomes:

p:m(ﬁ.j).(dr\.dg):
=I\7‘;j(ﬁ~d§)-(j-dﬁ)= [E-as] [[3-a7

S A

Where, i is the current in the conductor. U i
P=u,-i

This is the integral form the Joule’s (Lenz) law for a circuit branch without
source:

Electrokinetic fields

Power density and Joule’s law

The expression of power dissipation is:
i
1
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Examples

Electrokinetic fields

Examplesf===
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